Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To reflect a point across the line [tex]\(x-y=0\)[/tex], it's helpful to recognize that this line can be rewritten in a more familiar form, which is [tex]\(y=x\)[/tex]. Reflecting a point across [tex]\(y=x\)[/tex] involves interchanging the coordinates of the point.
Given point [tex]\(E(4, 5)\)[/tex]:
1. Identify the coordinates of the point [tex]\(E\)[/tex]. The point [tex]\(E\)[/tex] has coordinates [tex]\((4, 5)\)[/tex].
2. To reflect [tex]\(E\)[/tex] across the line [tex]\(y=x\)[/tex], we need to swap the x-coordinate and the y-coordinate of the point. This means that:
- The x-coordinate of [tex]\(E\)[/tex] is 4.
- The y-coordinate of [tex]\(E\)[/tex] is 5.
When reflected across the line [tex]\(y=x\)[/tex], these coordinates will be interchanged.
3. Therefore, after reflection:
- The new x-coordinate will be the original y-coordinate of [tex]\(E\)[/tex], which is 5.
- The new y-coordinate will be the original x-coordinate of [tex]\(E\)[/tex], which is 4.
Thus, the coordinates of the reflected point [tex]\(E'\)[/tex] are [tex]\((5, 4)\)[/tex].
Therefore, the point [tex]\(E(4, 5)\)[/tex] reflected across the line [tex]\(x-y=0\)[/tex] (or [tex]\(y=x\)[/tex]) is [tex]\((5, 4)\)[/tex].
Given point [tex]\(E(4, 5)\)[/tex]:
1. Identify the coordinates of the point [tex]\(E\)[/tex]. The point [tex]\(E\)[/tex] has coordinates [tex]\((4, 5)\)[/tex].
2. To reflect [tex]\(E\)[/tex] across the line [tex]\(y=x\)[/tex], we need to swap the x-coordinate and the y-coordinate of the point. This means that:
- The x-coordinate of [tex]\(E\)[/tex] is 4.
- The y-coordinate of [tex]\(E\)[/tex] is 5.
When reflected across the line [tex]\(y=x\)[/tex], these coordinates will be interchanged.
3. Therefore, after reflection:
- The new x-coordinate will be the original y-coordinate of [tex]\(E\)[/tex], which is 5.
- The new y-coordinate will be the original x-coordinate of [tex]\(E\)[/tex], which is 4.
Thus, the coordinates of the reflected point [tex]\(E'\)[/tex] are [tex]\((5, 4)\)[/tex].
Therefore, the point [tex]\(E(4, 5)\)[/tex] reflected across the line [tex]\(x-y=0\)[/tex] (or [tex]\(y=x\)[/tex]) is [tex]\((5, 4)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.