Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Given that the ionization energy of the ground state of a certain hydrogen-like species is [tex]\( 106.82 \times 10^{-18} \)[/tex] J/atom, we need to determine the number of protons (denoted as [tex]\( Z \)[/tex]) in the nucleus of this species.
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
To solve this, we need to use the formula for the ionization energy of a hydrogen-like species:
[tex]\[ E = Z^2 \times R_H \][/tex]
where [tex]\( E \)[/tex] is the ionization energy, [tex]\( Z \)[/tex] is the number of protons in the nucleus, and [tex]\( R_H \)[/tex] is the Rydberg constant for hydrogen ([tex]\( 2.18 \times 10^{-18} \)[/tex] J).
The steps to find [tex]\( Z \)[/tex] are as follows:
1. Set up the equation: Use the given ionization energy [tex]\( E \)[/tex] and the Rydberg constant [tex]\( R_H \)[/tex]:
[tex]\[ 106.82 \times 10^{-18} = Z^2 \times 2.18 \times 10^{-18} \][/tex]
2. Solve for [tex]\( Z^2 \)[/tex]: Isolate [tex]\( Z^2 \)[/tex] by dividing both sides of the equation by [tex]\( 2.18 \times 10^{-18} \)[/tex]:
[tex]\[ Z^2 = \frac{106.82 \times 10^{-18}}{2.18 \times 10^{-18}} \][/tex]
3. Calculate the value: Perform the division:
[tex]\[ Z^2 = \frac{106.82}{2.18} \][/tex]
4. Simplify the division:
[tex]\[ Z^2 \approx 49 \][/tex]
5. Find [tex]\( Z \)[/tex]: Take the square root of [tex]\( Z^2 \)[/tex]:
[tex]\[ Z = \sqrt{49} \][/tex]
[tex]\[ Z = 7 \][/tex]
Thus, the number of protons contained in the nucleus of this hydrogen-like species is [tex]\( 7 \)[/tex].
The correct answer is:
e) 7
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.