Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the given expression:
[tex]\[ \left(\frac{1}{7} x+\frac{3}{8}\right)+\left(\frac{2}{9} x-\frac{1}{8}\right) \][/tex]
we need to combine the like terms involving [tex]\( x \)[/tex] and the constant terms separately.
1. Combine the [tex]\( x \)[/tex]-terms:
[tex]\[ \frac{1}{7} x + \frac{2}{9} x \][/tex]
To add these, we find a common denominator. The denominators are 7 and 9, so the least common multiple is 63. Rewrite each fraction with the common denominator:
[tex]\[ \frac{1}{7} x = \frac{1 \cdot 9}{7 \cdot 9} x = \frac{9}{63} x \][/tex]
[tex]\[ \frac{2}{9} x = \frac{2 \cdot 7}{9 \cdot 7} x = \frac{14}{63} x \][/tex]
Now, we can add the two fractions:
[tex]\[ \frac{9}{63} x + \frac{14}{63} x = \frac{9 + 14}{63} x = \frac{23}{63} x \][/tex]
2. Combine the constant terms:
[tex]\[ \frac{3}{8} - \frac{1}{8} \][/tex]
Both fractions already have the common denominator 8:
[tex]\[ \frac{3}{8} - \frac{1}{8} = \frac{3 - 1}{8} = \frac{2}{8} = \frac{1}{4} \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ \frac{23}{63} x + \frac{1}{4} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{23}{63} x + \frac{1}{4}} \][/tex]
Which corresponds to option D:
D. [tex]\(\frac{23}{63} x + \frac{1}{4}\)[/tex]
[tex]\[ \left(\frac{1}{7} x+\frac{3}{8}\right)+\left(\frac{2}{9} x-\frac{1}{8}\right) \][/tex]
we need to combine the like terms involving [tex]\( x \)[/tex] and the constant terms separately.
1. Combine the [tex]\( x \)[/tex]-terms:
[tex]\[ \frac{1}{7} x + \frac{2}{9} x \][/tex]
To add these, we find a common denominator. The denominators are 7 and 9, so the least common multiple is 63. Rewrite each fraction with the common denominator:
[tex]\[ \frac{1}{7} x = \frac{1 \cdot 9}{7 \cdot 9} x = \frac{9}{63} x \][/tex]
[tex]\[ \frac{2}{9} x = \frac{2 \cdot 7}{9 \cdot 7} x = \frac{14}{63} x \][/tex]
Now, we can add the two fractions:
[tex]\[ \frac{9}{63} x + \frac{14}{63} x = \frac{9 + 14}{63} x = \frac{23}{63} x \][/tex]
2. Combine the constant terms:
[tex]\[ \frac{3}{8} - \frac{1}{8} \][/tex]
Both fractions already have the common denominator 8:
[tex]\[ \frac{3}{8} - \frac{1}{8} = \frac{3 - 1}{8} = \frac{2}{8} = \frac{1}{4} \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ \frac{23}{63} x + \frac{1}{4} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{23}{63} x + \frac{1}{4}} \][/tex]
Which corresponds to option D:
D. [tex]\(\frac{23}{63} x + \frac{1}{4}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.