Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's simplify the given expression step by step.
The given expression is:
[tex]\[ \frac{a^4 b^3}{a^5 b^2} \][/tex]
To simplify this, we need to handle the [tex]\(a\)[/tex] terms and the [tex]\(b\)[/tex] terms separately.
### Step 1: Simplify the [tex]\(a\)[/tex] terms
Look at the [tex]\(a\)[/tex] terms in the numerator and denominator:
[tex]\[ \frac{a^4}{a^5} \][/tex]
Using the properties of exponents, specifically [tex]\( \frac{x^m}{x^n} = x^{m-n} \)[/tex], we get:
[tex]\[ \frac{a^4}{a^5} = a^{4-5} = a^{-1} \][/tex]
Since [tex]\(a^{-1} = \frac{1}{a}\)[/tex], this simplifies to:
[tex]\[ \frac{1}{a} \][/tex]
### Step 2: Simplify the [tex]\(b\)[/tex] terms
Next, look at the [tex]\(b\)[/tex] terms in the numerator and denominator:
[tex]\[ \frac{b^3}{b^2} \][/tex]
Using the same property of exponents:
[tex]\[ \frac{b^3}{b^2} = b^{3-2} = b \][/tex]
### Step 3: Combine the results
Now, combine the simplified [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms:
[tex]\[ \frac{a^4 b^3}{a^5 b^2} = \frac{1}{a} \times b = \frac{b}{a} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ \frac{b}{a} \][/tex]
The given expression is:
[tex]\[ \frac{a^4 b^3}{a^5 b^2} \][/tex]
To simplify this, we need to handle the [tex]\(a\)[/tex] terms and the [tex]\(b\)[/tex] terms separately.
### Step 1: Simplify the [tex]\(a\)[/tex] terms
Look at the [tex]\(a\)[/tex] terms in the numerator and denominator:
[tex]\[ \frac{a^4}{a^5} \][/tex]
Using the properties of exponents, specifically [tex]\( \frac{x^m}{x^n} = x^{m-n} \)[/tex], we get:
[tex]\[ \frac{a^4}{a^5} = a^{4-5} = a^{-1} \][/tex]
Since [tex]\(a^{-1} = \frac{1}{a}\)[/tex], this simplifies to:
[tex]\[ \frac{1}{a} \][/tex]
### Step 2: Simplify the [tex]\(b\)[/tex] terms
Next, look at the [tex]\(b\)[/tex] terms in the numerator and denominator:
[tex]\[ \frac{b^3}{b^2} \][/tex]
Using the same property of exponents:
[tex]\[ \frac{b^3}{b^2} = b^{3-2} = b \][/tex]
### Step 3: Combine the results
Now, combine the simplified [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms:
[tex]\[ \frac{a^4 b^3}{a^5 b^2} = \frac{1}{a} \times b = \frac{b}{a} \][/tex]
So, the simplified form of the given expression is:
[tex]\[ \frac{b}{a} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.