Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's break down the problem and find the required values step-by-step.
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
Given the position function:
[tex]\[ s(t) = 8 \sin (5t) \][/tex]
We're asked to find the average velocities over specific intervals and then make a conjecture about the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex].
1. Average Velocities
The average velocity over the interval [tex]\([t_1, t_2]\)[/tex] can be calculated using the difference quotient:
[tex]\[ v_{\text{avg}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]
Now, let's compute this for each given interval.
- Interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]:
- [tex]\( t_1 = \frac{\pi}{2} \)[/tex]
- [tex]\( t_2 = \pi \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \sin \left(5 \cdot \frac{\pi}{2}\right) = 8 \sin \left(\frac{5\pi}{2}\right) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \cdot \pi\right) = 8 \sin (5\pi) = -8 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-8 - 8}{\pi - \frac{\pi}{2}} = \frac{-16}{\frac{\pi}{2}} = \frac{-16 \cdot 2}{\pi} = -\frac{32}{\pi} \approx -10.1859 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.1 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.1\right)\right) \approx -0.792584 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.792584 - 8}{0.1} = -5.092958 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.01 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.01\right)\right) \approx -0.079933 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.079933 - 8}{0.01} = -0.999791 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.001\right)\right) \approx -0.007999986 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.007999986 - 8}{0.001} = -0.0999998 \][/tex]
- Interval [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]:
- [tex]\( t_2 = \frac{\pi}{2} + 0.0001 \)[/tex]
Using these:
- [tex]\( s(t_1) = 8 \)[/tex]
- [tex]\( s(t_2) = 8 \sin \left(5 \left(\frac{\pi}{2} + 0.0001\right)\right) \approx -0.0007999998 \)[/tex]
Thus, the average velocity is:
[tex]\[ v_{\text{avg}} = \frac{-0.0007999998 - 8}{0.0001} = -0.0099999998 \][/tex]
2. Instantaneous Velocity at [tex]\( t = \frac{\pi}{2} \)[/tex]:
The instantaneous velocity is found by taking the derivative of [tex]\(s(t)\)[/tex] and evaluating it at [tex]\( t = \frac{\pi}{2} \)[/tex].
[tex]\[ v(t) = \frac{ds}{dt} = 40 \cos (5t) \][/tex]
At [tex]\( t = \frac{\pi}{2} \)[/tex]:
[tex]\[ v\left(\frac{\pi}{2}\right) = 40 \cos \left(5 \cdot \frac{\pi}{2}\right) = 40 \cos \left(\frac{5\pi}{2}\right) = 40 \cdot 0 = 0 \][/tex]
However, we note that [tex]\(40 \cos \left(\frac{5\pi}{2}\right) \approx 1.2246467991473532 \times 10^{-14}\)[/tex], which is very close to zero (practically zero).
Summary:
Here's the completed table with the average velocities and conjecture on instantaneous velocity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline Time \ Interval & \left[\frac{\pi}{2}, \pi\right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001 \right] & \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001 \right] \\ \hline Average \ Velocity & -10.1859 & -5.092958 & -0.999791 & -0.0999998 & -0.0099999998 \\ \hline \end{array} \][/tex]
Conjecture about the instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex]:
The instantaneous velocity at [tex]\(t = \frac{\pi}{2}\)[/tex] is approximately [tex]\( 1.2246467991473532 \times 10^{-14} \text{ or practically } 0 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.