Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

It is thought that the variables [tex]$s$[/tex] and [tex]$t$[/tex] satisfy a relation of the form [tex]$\left(\frac{s}{t}\right)^p = q e^{-t}$[/tex], where the constants [tex]$p$[/tex] and [tex]$q$[/tex] are positive integers.

By drawing a linear graph, find the values of [tex]$p$[/tex] and [tex]$q$[/tex].

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$t$ & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\hline
$s$ & 1.09 & 1.96 & 2.67 & 3.22 & 3.64 \\
\hline
\end{tabular}
\][/tex]


Sagot :

To find the constants [tex]\( p \)[/tex] and [tex]\( q \)[/tex] in the relation [tex]\(\left(\frac{s}{t}\right)^p = q e^{-t}\)[/tex], we will transform the equation and use a linear regression approach on logarithmic scales. Here’s a step-by-step outline to solve this problem:

1. Transform the Relation:
Start with the given equation:
[tex]\[ \left(\frac{s}{t}\right)^p = q e^{-t} \][/tex]
Take the natural logarithm of both sides:
[tex]\[ \ln\left(\left(\frac{s}{t}\right)^p\right) = \ln \left( q e^{-t} \right) \][/tex]
Apply logarithm properties:
[tex]\[ p \cdot \ln \left( \frac{s}{t} \right) = \ln(q) - t \][/tex]
Simplify further:
[tex]\[ p \left( \ln(s) - \ln(t) \right) = \ln(q) - t \][/tex]

2. Prepare the Data for Linear Regression:
Let's list the values of [tex]\( t \)[/tex] and [tex]\( s \)[/tex] from the provided table.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline t & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ \hline s & 1.09 & 1.96 & 2.67 & 3.22 & 3.64 \\ \hline \end{array} \][/tex]

3. Compute [tex]\(\ln(s)\)[/tex] and [tex]\(\ln(t)\)[/tex] for Each Pair ([tex]\(t, s\)[/tex]):
[tex]\[ \begin{array}{|c|c|c|} \hline t & s & \ln(s) & \ln(t) \\ \hline 0.2 & 1.09 & 0.0862 & -1.6094 \\ \hline 0.4 & 1.96 & 0.6729 & -0.9163 \\ \hline 0.6 & 2.67 & 0.9821 & -0.5108 \\ \hline 0.8 & 3.22 & 1.1694 & -0.2231 \\ \hline 1.0 & 3.64 & 1.2920 & 0.0000 \\ \hline \end{array} \][/tex]

4. Perform Linear Regression on [tex]\( \ln(s) \)[/tex] vs [tex]\( \ln(t) \)[/tex]:
We assume:
[tex]\[ y = \ln(s) \quad \text{and} \quad x = \ln(t) \][/tex]
The linear relation [tex]\( y = mx + b \)[/tex] can be determined by fitting a line to the data points [tex]\((\ln(t), \ln(s))\)[/tex].

From the previous calculation:
- The slope ([tex]\( m \)[/tex]) of this linear regression is 0.7564.
- The intercept ([tex]\( b \)[/tex]) of this linear regression is 1.3336.

5. Calculate [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- The slope ([tex]\( m \)[/tex]) corresponds to the exponent [tex]\( p \)[/tex]:
[tex]\[ p = 0.7564 \][/tex]
- The intercept ([tex]\( b \)[/tex]) corresponds to [tex]\( \ln(q) \)[/tex]:
[tex]\[ \ln(q) = 1.3336 \implies q = e^{1.3336} = 3.7947 \][/tex]

Finally, the values of the constants are:
[tex]\[ p \approx 0.756 \quad \text{and} \quad q \approx 3.795 \][/tex]

Thus, the relationship between [tex]\( s \)[/tex] and [tex]\( t \)[/tex] is successfully determined.