Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's consider the position function [tex]\( s(t) = 8 \sin(3t) \)[/tex], which describes a block bouncing vertically on a spring.
To find the average velocity over a given time interval [tex]\([t_0, t_1]\)[/tex], we use the formula:
[tex]\[ \text{Average Velocity} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} \][/tex]
We need to calculate the average velocities over various time intervals and fill in the table. Let's list the intervals and then their corresponding average velocities.
The time intervals are:
1. [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]
2. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]
3. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]
4. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]
5. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]
Using the given position function [tex]\( s(t) \)[/tex], let's calculate the average velocities for each interval:
- For the interval [tex]\( \left[\frac{\pi}{2}, \pi\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 5.092958178940653 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 3.5730808699515273 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.3599730008099652 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.03599997299997112 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.0035999999692397167 \][/tex]
We can now fill in the table with these results.
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time \\ Interval \end{tabular} & \begin{tabular}{c} Average \\ Velocity \end{tabular} \\ \hline \(\left[\frac{\pi}{2}, \pi\right]\) & 5.092958178940653 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\) & 3.5730808699515273 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\) & 0.3599730008099652 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\) & 0.03599997299997112 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\) & 0.0035999999692397167 \\ \hline \end{tabular} \][/tex]
From the table, we observe that as the interval gets smaller and smaller, the average velocity approaches zero. Hence, we can make the conjecture that the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex] is approximately zero. This result is confirmed by the smallest average velocities in the list above, suggesting the instantaneous velocity value is [tex]\(-4.408728476930472 \times 10^{-15}\)[/tex], which is extremely close to zero.
To find the average velocity over a given time interval [tex]\([t_0, t_1]\)[/tex], we use the formula:
[tex]\[ \text{Average Velocity} = \frac{s(t_1) - s(t_0)}{t_1 - t_0} \][/tex]
We need to calculate the average velocities over various time intervals and fill in the table. Let's list the intervals and then their corresponding average velocities.
The time intervals are:
1. [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex]
2. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\)[/tex]
3. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\)[/tex]
4. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\)[/tex]
5. [tex]\(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\)[/tex]
Using the given position function [tex]\( s(t) \)[/tex], let's calculate the average velocities for each interval:
- For the interval [tex]\( \left[\frac{\pi}{2}, \pi\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 5.092958178940653 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 3.5730808699515273 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.3599730008099652 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.03599997299997112 \][/tex]
- For the interval [tex]\( \left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right] \)[/tex]:
[tex]\[ \text{Average Velocity} = 0.0035999999692397167 \][/tex]
We can now fill in the table with these results.
[tex]\[ \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Time \\ Interval \end{tabular} & \begin{tabular}{c} Average \\ Velocity \end{tabular} \\ \hline \(\left[\frac{\pi}{2}, \pi\right]\) & 5.092958178940653 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.1\right]\) & 3.5730808699515273 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.01\right]\) & 0.3599730008099652 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.001\right]\) & 0.03599997299997112 \\ \hline \(\left[\frac{\pi}{2}, \frac{\pi}{2} + 0.0001\right]\) & 0.0035999999692397167 \\ \hline \end{tabular} \][/tex]
From the table, we observe that as the interval gets smaller and smaller, the average velocity approaches zero. Hence, we can make the conjecture that the instantaneous velocity at [tex]\( t = \frac{\pi}{2} \)[/tex] is approximately zero. This result is confirmed by the smallest average velocities in the list above, suggesting the instantaneous velocity value is [tex]\(-4.408728476930472 \times 10^{-15}\)[/tex], which is extremely close to zero.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.