Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the formula for the given function, let's break it down step-by-step.
The given function is of the form:
[tex]\[ y = 1.7 \cos \left(\frac{2 \pi}{[?]}(x - \square)\right) + \ldots \][/tex]
This form is a cosine function [tex]\( y = A \cos \left(B (x - C)\right) + D \)[/tex], where [tex]\( A \)[/tex] is the amplitude, [tex]\( B \)[/tex] is the frequency, [tex]\( C \)[/tex] is the phase shift, and [tex]\( D \)[/tex] is the vertical shift.
1. Identify the Amplitude (A):
The amplitude [tex]\( A \)[/tex] is the coefficient in front of the cosine function. In this case:
[tex]\[ A = 1.7 \][/tex]
2. Determine the Frequency (B) and the Period (T):
For a cosine function of the form [tex]\( \cos(B (x - C)) \)[/tex], [tex]\( B \)[/tex] is related to the period [tex]\( T \)[/tex] by:
[tex]\[ B = \frac{2 \pi}{T} \][/tex]
Given that [tex]\( B = \frac{2 \pi}{[?]} \)[/tex], let’s consider that the period [tex]\( T \)[/tex] is determined as follows:
[tex]\[ B = 2 \pi \][/tex]
Therefore,
[tex]\[ T = \frac{2 \pi}{2 \pi} = 1 \][/tex]
3. Identify the Phase Shift (C):
The phase shift [tex]\( C \)[/tex] in the expression [tex]\( \left(x - C\right) \)[/tex] is given directly. Here:
[tex]\[ C = 0 \][/tex]
This implies that there is no horizontal shift in the function.
4. Construct the Function:
Plugging in [tex]\( A = 1.7 \)[/tex], [tex]\( B = 2\pi \)[/tex], and [tex]\( C = 0 \)[/tex], the complete function becomes:
[tex]\[ y = 1.7 \cos (2\pi (x - 0)) \][/tex]
5. Simplify the Equation:
Since [tex]\( C = 0 \)[/tex]:
[tex]\[ y = 1.7 \cos (2\pi x) \][/tex]
So, the formula for the function is:
[tex]\[ y = 1.7 \cos (6.283185307179586 \cdot (x - 0)) \][/tex]
This expression simplifies to:
[tex]\[ y = 1.7 \cos (6.283185307179586 x) \][/tex]
The given function is of the form:
[tex]\[ y = 1.7 \cos \left(\frac{2 \pi}{[?]}(x - \square)\right) + \ldots \][/tex]
This form is a cosine function [tex]\( y = A \cos \left(B (x - C)\right) + D \)[/tex], where [tex]\( A \)[/tex] is the amplitude, [tex]\( B \)[/tex] is the frequency, [tex]\( C \)[/tex] is the phase shift, and [tex]\( D \)[/tex] is the vertical shift.
1. Identify the Amplitude (A):
The amplitude [tex]\( A \)[/tex] is the coefficient in front of the cosine function. In this case:
[tex]\[ A = 1.7 \][/tex]
2. Determine the Frequency (B) and the Period (T):
For a cosine function of the form [tex]\( \cos(B (x - C)) \)[/tex], [tex]\( B \)[/tex] is related to the period [tex]\( T \)[/tex] by:
[tex]\[ B = \frac{2 \pi}{T} \][/tex]
Given that [tex]\( B = \frac{2 \pi}{[?]} \)[/tex], let’s consider that the period [tex]\( T \)[/tex] is determined as follows:
[tex]\[ B = 2 \pi \][/tex]
Therefore,
[tex]\[ T = \frac{2 \pi}{2 \pi} = 1 \][/tex]
3. Identify the Phase Shift (C):
The phase shift [tex]\( C \)[/tex] in the expression [tex]\( \left(x - C\right) \)[/tex] is given directly. Here:
[tex]\[ C = 0 \][/tex]
This implies that there is no horizontal shift in the function.
4. Construct the Function:
Plugging in [tex]\( A = 1.7 \)[/tex], [tex]\( B = 2\pi \)[/tex], and [tex]\( C = 0 \)[/tex], the complete function becomes:
[tex]\[ y = 1.7 \cos (2\pi (x - 0)) \][/tex]
5. Simplify the Equation:
Since [tex]\( C = 0 \)[/tex]:
[tex]\[ y = 1.7 \cos (2\pi x) \][/tex]
So, the formula for the function is:
[tex]\[ y = 1.7 \cos (6.283185307179586 \cdot (x - 0)) \][/tex]
This expression simplifies to:
[tex]\[ y = 1.7 \cos (6.283185307179586 x) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.