Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the range of possible values for [tex]\( h \)[/tex] using the triangle inequality theorem, we need to analyze the side lengths given:
1. Side 1: [tex]\( 3x \)[/tex] cm
2. Side 2: [tex]\( 7x \)[/tex] cm
3. Side 3: [tex]\( h \)[/tex] cm
The triangle inequality theorem states that for any triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]
Let’s apply these inequalities to our triangle:
1. [tex]\( 3x + 7x > h \)[/tex]
[tex]\[ 10x > h \][/tex]
[tex]\[ h < 10x \][/tex]
2. [tex]\( 3x + h > 7x \)[/tex]
[tex]\[ h > 7x - 3x \][/tex]
[tex]\[ h > 4x \][/tex]
3. [tex]\( 7x + h > 3x \)[/tex]
[tex]\[ h > 3x - 7x \][/tex]
[tex]\[ h > -4x \][/tex]
Since [tex]\( h > -4x \)[/tex] will always be true as long as [tex]\( h > 4x \)[/tex], it isn't a restrictive condition in this context.
Combining these inequalities, we get:
[tex]\[ 4x < h < 10x \][/tex]
Therefore, the expression that describes the possible values of [tex]\( h \)[/tex] in cm is:
[tex]\[ 4x < h < 10x \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4x < h < 10x} \][/tex]
1. Side 1: [tex]\( 3x \)[/tex] cm
2. Side 2: [tex]\( 7x \)[/tex] cm
3. Side 3: [tex]\( h \)[/tex] cm
The triangle inequality theorem states that for any triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]
Let’s apply these inequalities to our triangle:
1. [tex]\( 3x + 7x > h \)[/tex]
[tex]\[ 10x > h \][/tex]
[tex]\[ h < 10x \][/tex]
2. [tex]\( 3x + h > 7x \)[/tex]
[tex]\[ h > 7x - 3x \][/tex]
[tex]\[ h > 4x \][/tex]
3. [tex]\( 7x + h > 3x \)[/tex]
[tex]\[ h > 3x - 7x \][/tex]
[tex]\[ h > -4x \][/tex]
Since [tex]\( h > -4x \)[/tex] will always be true as long as [tex]\( h > 4x \)[/tex], it isn't a restrictive condition in this context.
Combining these inequalities, we get:
[tex]\[ 4x < h < 10x \][/tex]
Therefore, the expression that describes the possible values of [tex]\( h \)[/tex] in cm is:
[tex]\[ 4x < h < 10x \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{4x < h < 10x} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.