Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

An exponential function follows a pattern of decay through the points [tex]$(-2, 25)$[/tex], [tex][tex]$(-1, 5)$[/tex][/tex], and [tex]$(0, 1)$[/tex]. Determine the base of the function.

A. [tex]5[/tex]
B. [tex]-5[/tex]
C. [tex]-\frac{1}{5}[/tex]
D. [tex]\frac{1}{5}[/tex]


Sagot :

To determine the base of the exponential function, which follows a pattern of decay through the points [tex]\((-2, 25)\)[/tex], [tex]\((-1, 5)\)[/tex], and [tex]\((0, 1)\)[/tex], we start by recognizing that the exponential function is of the form [tex]\( y = a \cdot b^x \)[/tex], where [tex]\(a\)[/tex] is a constant and [tex]\(b\)[/tex] is the base we need to find.

Using the given points, we can set up equations based on the form [tex]\( y = a \cdot b^x \)[/tex]:

1. For the point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = a \cdot b^{-2} \][/tex]

2. For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = a \cdot b^{-1} \][/tex]

3. For the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]

Next, we simplify these equations to find the base [tex]\(b\)[/tex]:

First, from the point [tex]\((0, 1)\)[/tex]:
[tex]\[ 1 = a \cdot b^0 \][/tex]
Since any number raised to the power of 0 is 1, [tex]\(b^0 = 1\)[/tex]. Thus, we have:
[tex]\[ 1 = a \cdot 1 \][/tex]
This simplifies to:
[tex]\[ a = 1 \][/tex]

Now, substitute [tex]\(a = 1\)[/tex] into the equations derived from the other points.

For the point [tex]\((-1, 5)\)[/tex]:
[tex]\[ 5 = 1 \cdot b^{-1} \][/tex]
[tex]\[ 5 = \frac{1}{b} \][/tex]

Solving for [tex]\(b\)[/tex]:
[tex]\[ b = \frac{1}{5} \][/tex]

To confirm, we can use the remaining point [tex]\((-2, 25)\)[/tex]:
[tex]\[ 25 = 1 \cdot b^{-2} \][/tex]
[tex]\[ 25 = \left(\frac{1}{5}\right)^{-2} \][/tex]
Since [tex]\(\left(\frac{1}{5}\right)^{-2} = 5^2 = 25\)[/tex], the equation holds true.

Therefore, the base of the exponential function is:
[tex]\[ b = \frac{1}{5} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.