Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To address the given questions step-by-step:
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
### Part (a)
We need to find the rate of change of [tex]\( S(t) \)[/tex], which is represented by the derivative of [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
Given the function:
[tex]\[ S(t) = 100,000 e^{-0.8 t} \][/tex]
1. To find the derivative [tex]\(\frac{dS}{dt}\)[/tex], we must differentiate [tex]\( S(t) \)[/tex] with respect to [tex]\( t \)[/tex].
2. Using the chain rule, the differentiation of an exponential function [tex]\( a e^{kt} \)[/tex] with respect to [tex]\( t \)[/tex] is [tex]\( a k e^{kt} \)[/tex].
Thus,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot \frac{d}{dt}\left( e^{-0.8 t} \right) \][/tex]
3. Applying the chain rule to [tex]\( e^{-0.8 t} \)[/tex], we get:
[tex]\[ \frac{d}{dt}\left( e^{-0.8 t} \right) = -0.8 e^{-0.8 t} \][/tex]
Therefore,
[tex]\[ \frac{dS}{dt} = 100,000 \cdot (-0.8) e^{-0.8 t} \][/tex]
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
Hence, the rate of change of [tex]\( S \)[/tex] is:
[tex]\[ \frac{dS}{dt} = -80,000 e^{-0.8 t} \][/tex]
### Part (b)
To determine whether sales are decreasing, we should analyze both the function [tex]\( S(t) \)[/tex] and its derivative [tex]\(\frac{dS}{dt}\)[/tex].
1. The given function [tex]\( S(t) = 100,000 e^{-0.8 t} \)[/tex] is an exponential decay model. This is because it involves an exponential function with a negative exponent, representing a decreasing trend over time.
2. The derivative [tex]\(\frac{dS}{dt} = -80,000 e^{-0.8 t}\)[/tex] is our key indicator. Notice the following about the derivative:
- The term [tex]\( e^{-0.8 t} \)[/tex] is always positive for any value of [tex]\( t \geq 0 \)[/tex].
- The coefficient [tex]\(-80,000\)[/tex] makes [tex]\(\frac{dS}{dt}\)[/tex] always negative.
Since the derivative [tex]\(\frac{dS}{dt}\)[/tex] is always negative, it indicates that [tex]\( S(t) \)[/tex] is a decreasing function. This tells us that sales are continuously dropping over time.
Thus, the correct statements are:
- The given function is an exponential decay model.
- Additionally, the derivative of the given function is always negative, indicating sales are decreasing.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.