Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's break down the steps to solve this problem.
1. Identify the given information:
- The length of segment AB is provided as 2.20 units.
- Polygon ABCDE undergoes a reflection across the x-axis, which does not change the lengths of any of its sides.
- The reflected polygon A'B'C'DE is then dilated by a scale factor of 0.5 about point D.
2. Understand the transformation:
- When a polygon is dilated with a scale factor, the lengths of all its sides are multiplied by that scale factor.
- Thus, under a scale factor of 0.5, each side will become half of its original length.
3. Calculate the length of LM:
- Since vertices A and B correspond to L and M, respectively, the length of segment AB will be dilated to form the length of segment LM.
- To find the new length, multiply the original length of AB by the scale factor of 0.5.
[tex]\[ \text{Length of } LM = \text{Length of } AB \times \text{Scale Factor} \][/tex]
[tex]\[ \text{Length of } LM = 2.20 \text{ units} \times 0.5 \][/tex]
[tex]\[ \text{Length of } LM = 1.10 \text{ units} \][/tex]
Thus, the length of segment LM is 1.10 units.
1. Identify the given information:
- The length of segment AB is provided as 2.20 units.
- Polygon ABCDE undergoes a reflection across the x-axis, which does not change the lengths of any of its sides.
- The reflected polygon A'B'C'DE is then dilated by a scale factor of 0.5 about point D.
2. Understand the transformation:
- When a polygon is dilated with a scale factor, the lengths of all its sides are multiplied by that scale factor.
- Thus, under a scale factor of 0.5, each side will become half of its original length.
3. Calculate the length of LM:
- Since vertices A and B correspond to L and M, respectively, the length of segment AB will be dilated to form the length of segment LM.
- To find the new length, multiply the original length of AB by the scale factor of 0.5.
[tex]\[ \text{Length of } LM = \text{Length of } AB \times \text{Scale Factor} \][/tex]
[tex]\[ \text{Length of } LM = 2.20 \text{ units} \times 0.5 \][/tex]
[tex]\[ \text{Length of } LM = 1.10 \text{ units} \][/tex]
Thus, the length of segment LM is 1.10 units.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.