Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To divide the given radical expressions [tex]\( \frac{5 \sqrt{x^7}}{\sqrt{x^4}} \)[/tex], let's simplify each part step-by-step:
1. Simplify the Radicals:
- Start with [tex]\( \sqrt{x^7} \)[/tex]. We know that [tex]\( \sqrt{x^7} = (x^7)^{1/2} = x^{7/2} \)[/tex].
- Next, simplify [tex]\( \sqrt{x^4} \)[/tex]. We know that [tex]\( \sqrt{x^4} = (x^4)^{1/2} = x^{4/2} = x^2 \)[/tex].
2. Rewrite the Original Expression:
Using the simplified forms of the radicals, the given expression becomes:
[tex]\[ \frac{5 \sqrt{x^7}}{\sqrt{x^4}} = \frac{5 \cdot x^{7/2}}{x^2} \][/tex]
3. Simplify the Fraction:
To divide the exponents, use the property of exponents [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{5 \cdot x^{7/2}}{x^2} = 5 \cdot x^{(7/2) - 2} \][/tex]
4. Simplify the Exponents:
Calculate the exponent subtraction:
[tex]\[ 5 \cdot x^{(7/2 - 2)} = 5 \cdot x^{(7/2 - 4/2)} = 5 \cdot x^{3/2} \][/tex]
So, the final simplified expression is:
[tex]\[ \boxed{5 x^{3/2}} \][/tex]
1. Simplify the Radicals:
- Start with [tex]\( \sqrt{x^7} \)[/tex]. We know that [tex]\( \sqrt{x^7} = (x^7)^{1/2} = x^{7/2} \)[/tex].
- Next, simplify [tex]\( \sqrt{x^4} \)[/tex]. We know that [tex]\( \sqrt{x^4} = (x^4)^{1/2} = x^{4/2} = x^2 \)[/tex].
2. Rewrite the Original Expression:
Using the simplified forms of the radicals, the given expression becomes:
[tex]\[ \frac{5 \sqrt{x^7}}{\sqrt{x^4}} = \frac{5 \cdot x^{7/2}}{x^2} \][/tex]
3. Simplify the Fraction:
To divide the exponents, use the property of exponents [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]:
[tex]\[ \frac{5 \cdot x^{7/2}}{x^2} = 5 \cdot x^{(7/2) - 2} \][/tex]
4. Simplify the Exponents:
Calculate the exponent subtraction:
[tex]\[ 5 \cdot x^{(7/2 - 2)} = 5 \cdot x^{(7/2 - 4/2)} = 5 \cdot x^{3/2} \][/tex]
So, the final simplified expression is:
[tex]\[ \boxed{5 x^{3/2}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.