Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let’s break down the problem step by step.
### Step 1: Simplify the Cube Root Expression
Firstly, we are asked to simplify the term [tex]\(\sqrt[3]{-\frac{64}{27}}\)[/tex].
1. Determine the fraction inside the cube root:
[tex]\[ -\frac{64}{27} \][/tex]
2. Compute the cube root of [tex]\(-\frac{64}{27}\)[/tex]:
- The cube root of the numerator ([tex]\(-64\)[/tex]) is [tex]\(-4\)[/tex].
- The cube root of the denominator ([tex]\(27\)[/tex]) is [tex]\(3\)[/tex].
Combined, the cube root is:
[tex]\[ \sqrt[3]{-\frac{64}{27}} = \frac{\sqrt[3]{-64}}{\sqrt[3]{27}} = \frac{-4}{3} \approx -1.5874 + 1.154701j \][/tex]
### Step 2: Calculate the Square Root Expression
Next, we need to calculate [tex]\(\sqrt{81.36}\)[/tex]:
[tex]\[ \sqrt{81.36} = 9.019978 \][/tex]
### Step 3: Multiply the Results
Now, we multiply the results from Step 1 and Step 2:
[tex]\[ D = \left(0.6667 + 1.154701j\right) \times 9.019978 \][/tex]
### Step 4: Simplify the Complex Product
We multiply the complex number by the real number:
[tex]\[ D = \left(0.6667 + 1.154701j\right) \times 9.019978 \][/tex]
To find the real and imaginary parts:
- Real Part:
[tex]\[ \text{Real part} = 0.6667 \times 9.019978 = 6.013319 \][/tex]
- Imaginary Part:
[tex]\[ \text{Imaginary part} = 1.154701 \times 9.019978 = 10.415373 \][/tex]
Putting it all together:
[tex]\[ D = 6.013319 + 10.415373j \][/tex]
### Conclusion
So, the detailed computation results in:
[tex]\[ D \approx 6.013319 + 10.415373j \][/tex]
This value is the product of the cube root of [tex]\(-\frac{64}{27}\)[/tex] and the square root of [tex]\(81.36\)[/tex].
### Step 1: Simplify the Cube Root Expression
Firstly, we are asked to simplify the term [tex]\(\sqrt[3]{-\frac{64}{27}}\)[/tex].
1. Determine the fraction inside the cube root:
[tex]\[ -\frac{64}{27} \][/tex]
2. Compute the cube root of [tex]\(-\frac{64}{27}\)[/tex]:
- The cube root of the numerator ([tex]\(-64\)[/tex]) is [tex]\(-4\)[/tex].
- The cube root of the denominator ([tex]\(27\)[/tex]) is [tex]\(3\)[/tex].
Combined, the cube root is:
[tex]\[ \sqrt[3]{-\frac{64}{27}} = \frac{\sqrt[3]{-64}}{\sqrt[3]{27}} = \frac{-4}{3} \approx -1.5874 + 1.154701j \][/tex]
### Step 2: Calculate the Square Root Expression
Next, we need to calculate [tex]\(\sqrt{81.36}\)[/tex]:
[tex]\[ \sqrt{81.36} = 9.019978 \][/tex]
### Step 3: Multiply the Results
Now, we multiply the results from Step 1 and Step 2:
[tex]\[ D = \left(0.6667 + 1.154701j\right) \times 9.019978 \][/tex]
### Step 4: Simplify the Complex Product
We multiply the complex number by the real number:
[tex]\[ D = \left(0.6667 + 1.154701j\right) \times 9.019978 \][/tex]
To find the real and imaginary parts:
- Real Part:
[tex]\[ \text{Real part} = 0.6667 \times 9.019978 = 6.013319 \][/tex]
- Imaginary Part:
[tex]\[ \text{Imaginary part} = 1.154701 \times 9.019978 = 10.415373 \][/tex]
Putting it all together:
[tex]\[ D = 6.013319 + 10.415373j \][/tex]
### Conclusion
So, the detailed computation results in:
[tex]\[ D \approx 6.013319 + 10.415373j \][/tex]
This value is the product of the cube root of [tex]\(-\frac{64}{27}\)[/tex] and the square root of [tex]\(81.36\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.