Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem of finding the probability that the number of correct answers [tex]\( X \)[/tex] is fewer than 4 in a scenario where there are [tex]\( n = 6 \)[/tex] trials, each with a probability of success [tex]\( p = 0.35 \)[/tex], we can use the binomial distribution formula.
The binomial distribution provides the probability of having exactly [tex]\( k \)[/tex] successes in [tex]\( n \)[/tex] independent Bernoulli trials with the same probability of success [tex]\( p \)[/tex]. The probability mass function (PMF) for a binomial distribution is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\(\binom{n}{k} = \frac{n!}{k! (n-k)!}\)[/tex] is the binomial coefficient,
- [tex]\( n = 6 \)[/tex] is the number of trials,
- [tex]\( p = 0.35 \)[/tex] is the probability of success on a single trial,
- [tex]\( k \)[/tex] is the number of successes (correct answers).
We need to find the probability that [tex]\( X \)[/tex] is fewer than 4, which means summing the probabilities for [tex]\( X = 0 \)[/tex], [tex]\( X = 1 \)[/tex], [tex]\( X = 2 \)[/tex], and [tex]\( X = 3 \)[/tex]:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Now we compute each term separately:
1. [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X = 0) = \binom{6}{0} (0.35)^0 (0.65)^6 = 1 \times 1 \times (0.65)^6 \approx 0.1160 \][/tex]
2. [tex]\( P(X = 1) \)[/tex]:
[tex]\[ P(X = 1) = \binom{6}{1} (0.35)^1 (0.65)^5 = 6 \times 0.35 \times (0.65)^5 \approx 0.1618 \][/tex]
3. [tex]\( P(X = 2) \)[/tex]:
[tex]\[ P(X = 2) = \binom{6}{2} (0.35)^2 (0.65)^4 = 15 \times (0.35)^2 \times (0.65)^4 \approx 0.2248 \][/tex]
4. [tex]\( P(X = 3) \)[/tex]:
[tex]\[ P(X = 3) = \binom{6}{3} (0.35)^3 (0.65)^3 = 20 \times (0.35)^3 \times (0.65)^3 \approx 0.3800 \][/tex]
Adding these probabilities:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
[tex]\[ P(X < 4) \approx 0.1160 + 0.1618 + 0.2248 + 0.3800 = 0.8826 \][/tex]
Therefore, the probability that the number of correct answers is fewer than 4 is [tex]\( \boxed{0.8826} \)[/tex].
The binomial distribution provides the probability of having exactly [tex]\( k \)[/tex] successes in [tex]\( n \)[/tex] independent Bernoulli trials with the same probability of success [tex]\( p \)[/tex]. The probability mass function (PMF) for a binomial distribution is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\(\binom{n}{k} = \frac{n!}{k! (n-k)!}\)[/tex] is the binomial coefficient,
- [tex]\( n = 6 \)[/tex] is the number of trials,
- [tex]\( p = 0.35 \)[/tex] is the probability of success on a single trial,
- [tex]\( k \)[/tex] is the number of successes (correct answers).
We need to find the probability that [tex]\( X \)[/tex] is fewer than 4, which means summing the probabilities for [tex]\( X = 0 \)[/tex], [tex]\( X = 1 \)[/tex], [tex]\( X = 2 \)[/tex], and [tex]\( X = 3 \)[/tex]:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
Now we compute each term separately:
1. [tex]\( P(X = 0) \)[/tex]:
[tex]\[ P(X = 0) = \binom{6}{0} (0.35)^0 (0.65)^6 = 1 \times 1 \times (0.65)^6 \approx 0.1160 \][/tex]
2. [tex]\( P(X = 1) \)[/tex]:
[tex]\[ P(X = 1) = \binom{6}{1} (0.35)^1 (0.65)^5 = 6 \times 0.35 \times (0.65)^5 \approx 0.1618 \][/tex]
3. [tex]\( P(X = 2) \)[/tex]:
[tex]\[ P(X = 2) = \binom{6}{2} (0.35)^2 (0.65)^4 = 15 \times (0.35)^2 \times (0.65)^4 \approx 0.2248 \][/tex]
4. [tex]\( P(X = 3) \)[/tex]:
[tex]\[ P(X = 3) = \binom{6}{3} (0.35)^3 (0.65)^3 = 20 \times (0.35)^3 \times (0.65)^3 \approx 0.3800 \][/tex]
Adding these probabilities:
[tex]\[ P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
[tex]\[ P(X < 4) \approx 0.1160 + 0.1618 + 0.2248 + 0.3800 = 0.8826 \][/tex]
Therefore, the probability that the number of correct answers is fewer than 4 is [tex]\( \boxed{0.8826} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.