At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of finding the area of sector [tex]\( AOB \)[/tex], we need to follow these steps:
1. Calculate the radius of the circle:
Given [tex]\( OA = 5 \)[/tex], the circle's radius [tex]\( r \)[/tex] is 5 units.
2. Determine the value of [tex]\(\pi\)[/tex]:
For this problem, [tex]\(\pi = 3.14\)[/tex].
3. Calculate the circumference of the circle:
The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
Plugging in the values:
[tex]\[ C = 2 \times 3.14 \times 5 = 31.4 \text{ units} \][/tex]
4. Find the length of the arc [tex]\( \hat{AB} \)[/tex]:
According to the problem, the length of [tex]\( \hat{AB} \)[/tex] as a fraction of the circumference is [tex]\(\frac{1}{4}\)[/tex]. Therefore:
[tex]\[ \text{Length of } \hat{AB} = \frac{1}{4} \times 31.4 = 7.85 \text{ units} \][/tex]
5. Calculate the area of the circle:
The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the known values:
[tex]\[ A = 3.14 \times (5^2) = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
6. Determine the area of sector [tex]\( AOB \)[/tex]:
The area of sector [tex]\( AOB \)[/tex] is proportional to the arc length, which in this case is [tex]\(\frac{1}{4}\)[/tex] of the circle's area. Therefore:
[tex]\[ \text{Area of sector } AOB = \frac{\text{Length of } \hat{AB}}{\text{Circumference}} \times A = \frac{7.85}{31.4} \times 78.5 = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
The final area of sector [tex]\( AOB \)[/tex] is approximately 19.625 square units. Therefore, the answer closest to this value is:
A. 19.6 square units
1. Calculate the radius of the circle:
Given [tex]\( OA = 5 \)[/tex], the circle's radius [tex]\( r \)[/tex] is 5 units.
2. Determine the value of [tex]\(\pi\)[/tex]:
For this problem, [tex]\(\pi = 3.14\)[/tex].
3. Calculate the circumference of the circle:
The formula for the circumference [tex]\( C \)[/tex] of a circle is:
[tex]\[ C = 2 \pi r \][/tex]
Plugging in the values:
[tex]\[ C = 2 \times 3.14 \times 5 = 31.4 \text{ units} \][/tex]
4. Find the length of the arc [tex]\( \hat{AB} \)[/tex]:
According to the problem, the length of [tex]\( \hat{AB} \)[/tex] as a fraction of the circumference is [tex]\(\frac{1}{4}\)[/tex]. Therefore:
[tex]\[ \text{Length of } \hat{AB} = \frac{1}{4} \times 31.4 = 7.85 \text{ units} \][/tex]
5. Calculate the area of the circle:
The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the known values:
[tex]\[ A = 3.14 \times (5^2) = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]
6. Determine the area of sector [tex]\( AOB \)[/tex]:
The area of sector [tex]\( AOB \)[/tex] is proportional to the arc length, which in this case is [tex]\(\frac{1}{4}\)[/tex] of the circle's area. Therefore:
[tex]\[ \text{Area of sector } AOB = \frac{\text{Length of } \hat{AB}}{\text{Circumference}} \times A = \frac{7.85}{31.4} \times 78.5 = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]
The final area of sector [tex]\( AOB \)[/tex] is approximately 19.625 square units. Therefore, the answer closest to this value is:
A. 19.6 square units
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.