Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the relation shown in the table is a function, let's graph the points and examine the behavior of vertical lines passing through these points.
Here are the points given:
[tex]\[ \begin{array}{|r|r|} \hline x & y \\ \hline -1 & 3 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
We can plot these points on a Cartesian plane.
1. Point (-1, 3): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 3 \)[/tex].
2. Point (-1, 2): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex].
3. Point (0, -4): Located at [tex]\( x = 0 \)[/tex] and [tex]\( y = -4 \)[/tex].
4. Point (4, 2): Located at [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex].
Next, let's analyze these points:
- Vertical Line Test: For the relation to be a function, no vertical line should intersect the graph at more than one point.
Let’s now determine if any vertical line intersects more than one of these points:
- A vertical line at [tex]\( x = -1 \)[/tex] will pass through both (-1, 3) and (-1, 2).
Since the vertical line at [tex]\( x = -1 \)[/tex] intersects more than one point, the relation is not a function.
Therefore, the correct answer is:
- No; a vertical line passes through two graphed points.
Here are the points given:
[tex]\[ \begin{array}{|r|r|} \hline x & y \\ \hline -1 & 3 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
We can plot these points on a Cartesian plane.
1. Point (-1, 3): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 3 \)[/tex].
2. Point (-1, 2): Located at [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex].
3. Point (0, -4): Located at [tex]\( x = 0 \)[/tex] and [tex]\( y = -4 \)[/tex].
4. Point (4, 2): Located at [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex].
Next, let's analyze these points:
- Vertical Line Test: For the relation to be a function, no vertical line should intersect the graph at more than one point.
Let’s now determine if any vertical line intersects more than one of these points:
- A vertical line at [tex]\( x = -1 \)[/tex] will pass through both (-1, 3) and (-1, 2).
Since the vertical line at [tex]\( x = -1 \)[/tex] intersects more than one point, the relation is not a function.
Therefore, the correct answer is:
- No; a vertical line passes through two graphed points.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.