Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the quadratic expression [tex]\(x^2 + 7x + 12\)[/tex], we start by recognizing that it is a quadratic equation of the form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = 12\)[/tex].
Next, we look for two numbers that multiply to [tex]\(ac\)[/tex] (which is [tex]\(1 \times 12 = 12\)[/tex]) and add up to [tex]\(b\)[/tex] (which is [tex]\(7\)[/tex]). These numbers are [tex]\(3\)[/tex] and [tex]\(4\)[/tex], since:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
[tex]\[ 3 + 4 = 7 \][/tex]
We can then factor the quadratic expression as follows:
[tex]\[ x^2 + 7x + 12 = (x + 3)(x + 4) \][/tex]
To verify that this factorization is correct, we can expand [tex]\( (x + 3)(x + 4) \)[/tex] and check if it equals the original quadratic expression:
[tex]\[ (x + 3)(x + 4) = x(x + 4) + 3(x + 4) \][/tex]
[tex]\[ = x^2 + 4x + 3x + 12 \][/tex]
[tex]\[ = x^2 + 7x + 12 \][/tex]
This confirms that the factorization is accurate. Thus, the given quadratic expression [tex]\( x^2 + 7x + 12 \)[/tex] can be expressed as the product of two binomials:
[tex]\[ x^2 + 7x + 12 = (x + 3)(x + 4) \][/tex]
That is the detailed, step-by-step solution for the given quadratic expression.
Next, we look for two numbers that multiply to [tex]\(ac\)[/tex] (which is [tex]\(1 \times 12 = 12\)[/tex]) and add up to [tex]\(b\)[/tex] (which is [tex]\(7\)[/tex]). These numbers are [tex]\(3\)[/tex] and [tex]\(4\)[/tex], since:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
[tex]\[ 3 + 4 = 7 \][/tex]
We can then factor the quadratic expression as follows:
[tex]\[ x^2 + 7x + 12 = (x + 3)(x + 4) \][/tex]
To verify that this factorization is correct, we can expand [tex]\( (x + 3)(x + 4) \)[/tex] and check if it equals the original quadratic expression:
[tex]\[ (x + 3)(x + 4) = x(x + 4) + 3(x + 4) \][/tex]
[tex]\[ = x^2 + 4x + 3x + 12 \][/tex]
[tex]\[ = x^2 + 7x + 12 \][/tex]
This confirms that the factorization is accurate. Thus, the given quadratic expression [tex]\( x^2 + 7x + 12 \)[/tex] can be expressed as the product of two binomials:
[tex]\[ x^2 + 7x + 12 = (x + 3)(x + 4) \][/tex]
That is the detailed, step-by-step solution for the given quadratic expression.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.