Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the given quadratic equation [tex]\(x^2 + 8x - 9 = 0\)[/tex] using the quadratic formula, we can follow these detailed steps:
1. Identify the coefficients:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = 8\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -9\)[/tex] (constant term)
2. Write the quadratic formula:
The quadratic formula is [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex].
3. Substitute the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(8) \pm \sqrt{8^2 - 4(1)(-9)}}{2(1)} \][/tex]
4. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 8^2 - 4(1)(-9) = 64 + 36 = 100 \][/tex]
5. Calculate the square root of the discriminant:
[tex]\[ \sqrt{100} = 10 \][/tex]
6. Substitute back into the quadratic formula and solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-8 \pm 10}{2} \][/tex]
7. Find the two possible solutions:
- For [tex]\(x_1\)[/tex]:
[tex]\[ x_1 = \frac{-8 + 10}{2} = \frac{2}{2} = 1 \][/tex]
- For [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-8 - 10}{2} = \frac{-18}{2} = -9 \][/tex]
So the correct solutions should be [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Now, let's examine Soren's steps to identify the error:
- Step 1: [tex]\(x = \frac{-8 \pm \sqrt{64 + 36}}{2}\)[/tex]
This step is correct, as we calculated the discriminant correctly (64 + 36 = 100).
- Step 2: [tex]\(x = \frac{-8 \pm \sqrt{100}}{2}\)[/tex]
This step is also correct, as [tex]\(\sqrt{100} = 10\)[/tex].
- Step 3: [tex]\(x = \{-18, 2\}\)[/tex]
Here is where Soren made an error. The correct computation using the formula should result in the solutions [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Therefore, the error was made in Step 3. Soren did not properly solve the final expressions resulting from [tex]\(\frac{-8 \pm 10}{2}\)[/tex]. The correct results should have been [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
1. Identify the coefficients:
- [tex]\(a = 1\)[/tex] (coefficient of [tex]\(x^2\)[/tex])
- [tex]\(b = 8\)[/tex] (coefficient of [tex]\(x\)[/tex])
- [tex]\(c = -9\)[/tex] (constant term)
2. Write the quadratic formula:
The quadratic formula is [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex].
3. Substitute the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(8) \pm \sqrt{8^2 - 4(1)(-9)}}{2(1)} \][/tex]
4. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac = 8^2 - 4(1)(-9) = 64 + 36 = 100 \][/tex]
5. Calculate the square root of the discriminant:
[tex]\[ \sqrt{100} = 10 \][/tex]
6. Substitute back into the quadratic formula and solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{-8 \pm 10}{2} \][/tex]
7. Find the two possible solutions:
- For [tex]\(x_1\)[/tex]:
[tex]\[ x_1 = \frac{-8 + 10}{2} = \frac{2}{2} = 1 \][/tex]
- For [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = \frac{-8 - 10}{2} = \frac{-18}{2} = -9 \][/tex]
So the correct solutions should be [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Now, let's examine Soren's steps to identify the error:
- Step 1: [tex]\(x = \frac{-8 \pm \sqrt{64 + 36}}{2}\)[/tex]
This step is correct, as we calculated the discriminant correctly (64 + 36 = 100).
- Step 2: [tex]\(x = \frac{-8 \pm \sqrt{100}}{2}\)[/tex]
This step is also correct, as [tex]\(\sqrt{100} = 10\)[/tex].
- Step 3: [tex]\(x = \{-18, 2\}\)[/tex]
Here is where Soren made an error. The correct computation using the formula should result in the solutions [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Therefore, the error was made in Step 3. Soren did not properly solve the final expressions resulting from [tex]\(\frac{-8 \pm 10}{2}\)[/tex]. The correct results should have been [tex]\(x = 1\)[/tex] and [tex]\(x = -9\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.