Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the new volume of the balloon when placed in a hot room, we can use Charles's Law, which relates the volume and temperature of a gas at constant pressure. The law is given by:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas,
- [tex]\( T_1 \)[/tex] is the initial temperature of the gas (in Kelvin),
- [tex]\( V_2 \)[/tex] is the final volume of the gas,
- [tex]\( T_2 \)[/tex] is the final temperature of the gas (in Kelvin).
First, let's convert the given temperatures from Celsius to Kelvin:
[tex]\[ T_1 = 25.0^{\circ}C + 273.15 = 298.15\, K \][/tex]
[tex]\[ T_2 = 40.0^{\circ}C + 273.15 = 313.15\, K \][/tex]
Next, we rearrange the formula to solve for the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ V_2 = 3.50\, L \times \frac{313.15\, K}{298.15\, K} \][/tex]
Now, we calculate:
[tex]\[ V_2 \approx 3.50 \times 1.050351 \][/tex]
[tex]\[ V_2 \approx 3.676 \][/tex]
Hence, the new volume of the balloon in the hot room is approximately [tex]\( 3.68 \, L \)[/tex].
From the given options:
- 2.19 L
- 3.33 L
- 3.68 L
- 5.60 L
The correct answer is:
[tex]\[ \boxed{3.68} \][/tex]
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas,
- [tex]\( T_1 \)[/tex] is the initial temperature of the gas (in Kelvin),
- [tex]\( V_2 \)[/tex] is the final volume of the gas,
- [tex]\( T_2 \)[/tex] is the final temperature of the gas (in Kelvin).
First, let's convert the given temperatures from Celsius to Kelvin:
[tex]\[ T_1 = 25.0^{\circ}C + 273.15 = 298.15\, K \][/tex]
[tex]\[ T_2 = 40.0^{\circ}C + 273.15 = 313.15\, K \][/tex]
Next, we rearrange the formula to solve for the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ V_2 = 3.50\, L \times \frac{313.15\, K}{298.15\, K} \][/tex]
Now, we calculate:
[tex]\[ V_2 \approx 3.50 \times 1.050351 \][/tex]
[tex]\[ V_2 \approx 3.676 \][/tex]
Hence, the new volume of the balloon in the hot room is approximately [tex]\( 3.68 \, L \)[/tex].
From the given options:
- 2.19 L
- 3.33 L
- 3.68 L
- 5.60 L
The correct answer is:
[tex]\[ \boxed{3.68} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.