At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's find the simplified form of the expression [tex]\(\frac{9 x^2 - 25 y^2}{6 x^2 + 19 x y + 15 y}\)[/tex].
1. Identify the components:
- Numerator: [tex]\(9 x^2 - 25 y^2\)[/tex]
- Denominator: [tex]\(6 x^2 + 19 x y + 15 y\)[/tex]
2. Factor the numerator and denominator where possible:
- The numerator [tex]\(9 x^2 - 25 y^2\)[/tex] is a difference of squares.
- The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex].
So, we can write:
[tex]\[ 9 x^2 - 25 y^2 = (3x)^2 - (5y)^2 = (3x - 5y)(3x + 5y) \][/tex]
- The denominator [tex]\(6x^2 + 19xy + 15y\)[/tex] is a polynomial in two variables.
3. Simplify the expression using the factors:
[tex]\[ \frac{9 x^2 - 25 y^2}{6 x^2 + 19 x y + 15 y} = \frac{(3x - 5y)(3x + 5y)}{6 x^2 + 19 x y + 15 y} \][/tex]
4. Check for cancellation of common factors:
- Observe both the numerator and the denominator to see if any factors are common and could be canceled out. In this specific case, there are no common factors that can be simplified further in the given denominator and numerator.
Thus, the expression simplifies to:
[tex]\[ \boxed{\frac{9 x^2 - 25 y^2}{6 x^2 + 19 x y + 15 y}} \][/tex]
1. Identify the components:
- Numerator: [tex]\(9 x^2 - 25 y^2\)[/tex]
- Denominator: [tex]\(6 x^2 + 19 x y + 15 y\)[/tex]
2. Factor the numerator and denominator where possible:
- The numerator [tex]\(9 x^2 - 25 y^2\)[/tex] is a difference of squares.
- The difference of squares formula is [tex]\(a^2 - b^2 = (a - b)(a + b)\)[/tex].
So, we can write:
[tex]\[ 9 x^2 - 25 y^2 = (3x)^2 - (5y)^2 = (3x - 5y)(3x + 5y) \][/tex]
- The denominator [tex]\(6x^2 + 19xy + 15y\)[/tex] is a polynomial in two variables.
3. Simplify the expression using the factors:
[tex]\[ \frac{9 x^2 - 25 y^2}{6 x^2 + 19 x y + 15 y} = \frac{(3x - 5y)(3x + 5y)}{6 x^2 + 19 x y + 15 y} \][/tex]
4. Check for cancellation of common factors:
- Observe both the numerator and the denominator to see if any factors are common and could be canceled out. In this specific case, there are no common factors that can be simplified further in the given denominator and numerator.
Thus, the expression simplifies to:
[tex]\[ \boxed{\frac{9 x^2 - 25 y^2}{6 x^2 + 19 x y + 15 y}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.