Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's factorize the expression [tex]\( 9p + 3 \)[/tex].
Step 1: Identify the greatest common factor (GCF).
- The terms in the expression are [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex].
- The GCF of [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex] is [tex]\( 3 \)[/tex], because 3 is the largest number that divides both 9 and 3.
Step 2: Factor out the GCF from each term.
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 9p \)[/tex], we are left with [tex]\( 3p \)[/tex] because [tex]\( 9p \div 3 = 3p \)[/tex].
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 3 \)[/tex], we are left with [tex]\( 1 \)[/tex] because [tex]\( 3 \div 3 = 1 \)[/tex].
Step 3: Write the expression as the product of the GCF and the simplified terms within parentheses.
- After factoring out the GCF [tex]\( 3 \)[/tex], the expression [tex]\( 9p + 3 \)[/tex] can be rewritten as [tex]\( 3(3p + 1) \)[/tex].
So, the factorized form of the expression [tex]\( 9p + 3 \)[/tex] is:
[tex]\[ \boxed{3(3p + 1)} \][/tex]
Step 1: Identify the greatest common factor (GCF).
- The terms in the expression are [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex].
- The GCF of [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex] is [tex]\( 3 \)[/tex], because 3 is the largest number that divides both 9 and 3.
Step 2: Factor out the GCF from each term.
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 9p \)[/tex], we are left with [tex]\( 3p \)[/tex] because [tex]\( 9p \div 3 = 3p \)[/tex].
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 3 \)[/tex], we are left with [tex]\( 1 \)[/tex] because [tex]\( 3 \div 3 = 1 \)[/tex].
Step 3: Write the expression as the product of the GCF and the simplified terms within parentheses.
- After factoring out the GCF [tex]\( 3 \)[/tex], the expression [tex]\( 9p + 3 \)[/tex] can be rewritten as [tex]\( 3(3p + 1) \)[/tex].
So, the factorized form of the expression [tex]\( 9p + 3 \)[/tex] is:
[tex]\[ \boxed{3(3p + 1)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.