Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the system of linear equations using inverse matrices. The system of equations is given as:
[tex]\[ \begin{cases} 2x + 3y + z = -1 \\ 3x + 3y + z = 1 \\ 2x + 4y + z = -2 \end{cases} \][/tex]
We can represent this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \][/tex]
To find the solution vector [tex]\(X\)[/tex], we need to multiply the inverse of matrix [tex]\(A\)[/tex] with matrix [tex]\(B\)[/tex], i.e., [tex]\(X = A^{-1}B\)[/tex].
Now, we have the steps to find the solution:
1. Compute the inverse of matrix [tex]\(A\)[/tex], denoted as [tex]\(A^{-1}\)[/tex].
2. Multiply [tex]\(A^{-1}\)[/tex] with matrix [tex]\(B\)[/tex] to find [tex]\(X\)[/tex].
We know from our calculations that the result for [tex]\(X\)[/tex] is:
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (x, y, z) = (2, -1, -2) \][/tex]
Therefore, the ordered triple that solves the system is:
[tex]\[ \boxed{(2, -1, -2)} \][/tex]
[tex]\[ \begin{cases} 2x + 3y + z = -1 \\ 3x + 3y + z = 1 \\ 2x + 4y + z = -2 \end{cases} \][/tex]
We can represent this system in matrix form [tex]\(AX = B\)[/tex], where:
[tex]\[ A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{pmatrix} \][/tex]
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \][/tex]
To find the solution vector [tex]\(X\)[/tex], we need to multiply the inverse of matrix [tex]\(A\)[/tex] with matrix [tex]\(B\)[/tex], i.e., [tex]\(X = A^{-1}B\)[/tex].
Now, we have the steps to find the solution:
1. Compute the inverse of matrix [tex]\(A\)[/tex], denoted as [tex]\(A^{-1}\)[/tex].
2. Multiply [tex]\(A^{-1}\)[/tex] with matrix [tex]\(B\)[/tex] to find [tex]\(X\)[/tex].
We know from our calculations that the result for [tex]\(X\)[/tex] is:
[tex]\[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ (x, y, z) = (2, -1, -2) \][/tex]
Therefore, the ordered triple that solves the system is:
[tex]\[ \boxed{(2, -1, -2)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.