Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's consider the pair of functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = e^x \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.