Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve this step-by-step, starting with finding the focal length of the mirror and then the height of the image.
1. Given Values:
- Object height (h) = 2 cm
- Object distance (u) = 12 cm (will be taken as negative because it is in front of the mirror)
- Image distance (v) = 4 cm (will also be taken as negative because it is in front of the mirror for a concave mirror)
2. Sign Convention:
According to the sign convention for mirrors:
- Distances measured against the direction of incident light (towards the mirror) are taken as negative.
Hence,
- Object distance (u) = -12 cm
- Image distance (v) = -4 cm
3. Mirror Formula:
The mirror formula relates the object distance (u), image distance (v), and focal length (f) of a mirror:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substituting the given values:
[tex]\[ \frac{1}{f} = \frac{1}{-4} + \frac{1}{-12} \][/tex]
Solving the right-hand side:
[tex]\[ \frac{1}{f} = -\frac{1}{4} - \frac{1}{12} \][/tex]
To add these fractions, find a common denominator (12):
[tex]\[ \frac{1}{f} = -\frac{3}{12} - \frac{1}{12} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{4}{12} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{3} \][/tex]
Taking the reciprocal to find the focal length:
[tex]\[ f = -3 \text{ cm} \][/tex]
4. Magnification:
The magnification (m) produced by a mirror is given by:
[tex]\[ m = \frac{\text{Height of the image (h')}}{\text{Height of the object (h)}} = -\frac{v}{u} \][/tex]
Using the given values:
[tex]\[ m = -\frac{-4}{-12} = \frac{4}{12} = \frac{1}{3} \][/tex]
5. Height of the Image:
The height of the image (h') can be found using the magnification formula:
[tex]\[ h' = m \times h = \frac{1}{3} \times 2 \][/tex]
[tex]\[ h' = \frac{2}{3} \text{ cm} \][/tex]
Therefore, the focal length of the mirror is -3 cm, and the height of the image is [tex]\(-\frac{2}{3}\)[/tex] cm (or [tex]\(-0.67\)[/tex] cm) which indicates that the image is inverted.
1. Given Values:
- Object height (h) = 2 cm
- Object distance (u) = 12 cm (will be taken as negative because it is in front of the mirror)
- Image distance (v) = 4 cm (will also be taken as negative because it is in front of the mirror for a concave mirror)
2. Sign Convention:
According to the sign convention for mirrors:
- Distances measured against the direction of incident light (towards the mirror) are taken as negative.
Hence,
- Object distance (u) = -12 cm
- Image distance (v) = -4 cm
3. Mirror Formula:
The mirror formula relates the object distance (u), image distance (v), and focal length (f) of a mirror:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substituting the given values:
[tex]\[ \frac{1}{f} = \frac{1}{-4} + \frac{1}{-12} \][/tex]
Solving the right-hand side:
[tex]\[ \frac{1}{f} = -\frac{1}{4} - \frac{1}{12} \][/tex]
To add these fractions, find a common denominator (12):
[tex]\[ \frac{1}{f} = -\frac{3}{12} - \frac{1}{12} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{4}{12} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{3} \][/tex]
Taking the reciprocal to find the focal length:
[tex]\[ f = -3 \text{ cm} \][/tex]
4. Magnification:
The magnification (m) produced by a mirror is given by:
[tex]\[ m = \frac{\text{Height of the image (h')}}{\text{Height of the object (h)}} = -\frac{v}{u} \][/tex]
Using the given values:
[tex]\[ m = -\frac{-4}{-12} = \frac{4}{12} = \frac{1}{3} \][/tex]
5. Height of the Image:
The height of the image (h') can be found using the magnification formula:
[tex]\[ h' = m \times h = \frac{1}{3} \times 2 \][/tex]
[tex]\[ h' = \frac{2}{3} \text{ cm} \][/tex]
Therefore, the focal length of the mirror is -3 cm, and the height of the image is [tex]\(-\frac{2}{3}\)[/tex] cm (or [tex]\(-0.67\)[/tex] cm) which indicates that the image is inverted.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.