Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine an exponential function that models the given data of the home's value over time, we follow these detailed steps:
1. Understanding the data: The table gives us the value of the home (in thousands of dollars) at different time points (years since purchase).
2. Exponential Model: We assess that the home value can be modeled by an exponential function of the form:
[tex]\[ f(x) = a \cdot e^{bx} \][/tex]
where [tex]\( x \)[/tex] is the number of years since the purchase, [tex]\( a \)[/tex] is the initial value of the home in thousands of dollars, and [tex]\( b \)[/tex] is the exponential growth rate.
3. Converting the data for linear regression:
To find [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we take the natural logarithm of the value data to linearize it:
[tex]\[ \ln(y) = \ln(a \cdot e^{bx}) = \ln(a) + bx \][/tex]
This transforms our exponential relationship into a linear form:
[tex]\[ \ln(y) = bx + \ln(a) \][/tex]
4. Performing linear regression:
Using the given data:
[tex]\[ x = [0, 5, 10, 15, 20, 25] \][/tex]
[tex]\[ y = [38.9, 62.4, 89.3, 145.2, 210.8, 326.5] \][/tex]
We perform linear regression on the transformed data [tex]\( (\ln(y)) \)[/tex] to find the slope [tex]\( b \)[/tex] and the intercept [tex]\( \ln(a) \)[/tex].
5. Extracting [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
By solving the linear regression:
- [tex]\( a \)[/tex] is found by exponentiating the intercept.
- [tex]\( b \)[/tex] is the slope.
6. Fitting the Model:
After performing the calculation, we get:
[tex]\[ a \approx 39.59 \][/tex]
[tex]\[ b \approx 0.08 \][/tex]
Thus, the exponential function that models the data is:
[tex]\[ f(x) \approx 39.59 \cdot e^{0.08x} \][/tex]
7. Predicting the home value after 12 and 35 years:
Using the model [tex]\( f(x) = 39.59 \cdot e^{0.08x} \)[/tex]:
- After 12 years:
[tex]\[ f(12) \approx 39.59 \cdot e^{0.08 \cdot 12} \approx 109.05 \text{ thousand dollars} \][/tex]
- After 35 years:
[tex]\[ f(35) \approx 39.59 \cdot e^{0.08 \cdot 35} \approx 760.28 \text{ thousand dollars} \][/tex]
Summarizing our findings for the question:
The function [tex]\( f(x) \approx 39.59 \cdot e^{0.08x} \)[/tex] models the data.
- After 12 years, the home's value will be about [tex]\( \$109.05 \)[/tex] thousand.
- After 35 years, the home's value will be about [tex]\( \$760.28 \)[/tex] thousand.
1. Understanding the data: The table gives us the value of the home (in thousands of dollars) at different time points (years since purchase).
2. Exponential Model: We assess that the home value can be modeled by an exponential function of the form:
[tex]\[ f(x) = a \cdot e^{bx} \][/tex]
where [tex]\( x \)[/tex] is the number of years since the purchase, [tex]\( a \)[/tex] is the initial value of the home in thousands of dollars, and [tex]\( b \)[/tex] is the exponential growth rate.
3. Converting the data for linear regression:
To find [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we take the natural logarithm of the value data to linearize it:
[tex]\[ \ln(y) = \ln(a \cdot e^{bx}) = \ln(a) + bx \][/tex]
This transforms our exponential relationship into a linear form:
[tex]\[ \ln(y) = bx + \ln(a) \][/tex]
4. Performing linear regression:
Using the given data:
[tex]\[ x = [0, 5, 10, 15, 20, 25] \][/tex]
[tex]\[ y = [38.9, 62.4, 89.3, 145.2, 210.8, 326.5] \][/tex]
We perform linear regression on the transformed data [tex]\( (\ln(y)) \)[/tex] to find the slope [tex]\( b \)[/tex] and the intercept [tex]\( \ln(a) \)[/tex].
5. Extracting [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
By solving the linear regression:
- [tex]\( a \)[/tex] is found by exponentiating the intercept.
- [tex]\( b \)[/tex] is the slope.
6. Fitting the Model:
After performing the calculation, we get:
[tex]\[ a \approx 39.59 \][/tex]
[tex]\[ b \approx 0.08 \][/tex]
Thus, the exponential function that models the data is:
[tex]\[ f(x) \approx 39.59 \cdot e^{0.08x} \][/tex]
7. Predicting the home value after 12 and 35 years:
Using the model [tex]\( f(x) = 39.59 \cdot e^{0.08x} \)[/tex]:
- After 12 years:
[tex]\[ f(12) \approx 39.59 \cdot e^{0.08 \cdot 12} \approx 109.05 \text{ thousand dollars} \][/tex]
- After 35 years:
[tex]\[ f(35) \approx 39.59 \cdot e^{0.08 \cdot 35} \approx 760.28 \text{ thousand dollars} \][/tex]
Summarizing our findings for the question:
The function [tex]\( f(x) \approx 39.59 \cdot e^{0.08x} \)[/tex] models the data.
- After 12 years, the home's value will be about [tex]\( \$109.05 \)[/tex] thousand.
- After 35 years, the home's value will be about [tex]\( \$760.28 \)[/tex] thousand.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.