Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, we will use logical reasoning based on the transitive property of implication.
The transitive property of implication states that if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] are both true, then [tex]\( x \Rightarrow z \)[/tex] must also be true.
Let's analyze the given statements one by one:
A. [tex]\(\neg x \Rightarrow \neg z\)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must also be false.
- This does not necessarily follow from the given premises [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
B. [tex]\( x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is true, then [tex]\( z \)[/tex] must also be true.
- This is directly supported by the transitive property of implications since [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], hence [tex]\( x \Rightarrow z \)[/tex] must be true.
C. [tex]\( \neg x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must be true.
- There is no implication rule that directly supports this statement from [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
D. [tex]\( z \Rightarrow x \)[/tex]:
- The statement suggests that if [tex]\( z \)[/tex] is true, then [tex]\( x \)[/tex] must also be true.
- There is no implication rule that supports this reversal of the initial implications.
By considering the transitive property of implication, the only statement that must be true given [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] is:
B. [tex]\( x \Rightarrow z \)[/tex].
The transitive property of implication states that if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] are both true, then [tex]\( x \Rightarrow z \)[/tex] must also be true.
Let's analyze the given statements one by one:
A. [tex]\(\neg x \Rightarrow \neg z\)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must also be false.
- This does not necessarily follow from the given premises [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
B. [tex]\( x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is true, then [tex]\( z \)[/tex] must also be true.
- This is directly supported by the transitive property of implications since [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], hence [tex]\( x \Rightarrow z \)[/tex] must be true.
C. [tex]\( \neg x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must be true.
- There is no implication rule that directly supports this statement from [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
D. [tex]\( z \Rightarrow x \)[/tex]:
- The statement suggests that if [tex]\( z \)[/tex] is true, then [tex]\( x \)[/tex] must also be true.
- There is no implication rule that supports this reversal of the initial implications.
By considering the transitive property of implication, the only statement that must be true given [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] is:
B. [tex]\( x \Rightarrow z \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.