Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given relations are functions, we need to ensure that each input (the first element of the ordered pair) maps to exactly one output (the second element of the ordered pair). This means no input should be repeated with a different output.
Let's analyze each relation step by step:
1. Relation: [tex]\(\{(2,-5),(-2,0),(-3,6),(2,-4)\}\)[/tex]\
- Here, the input 2 appears twice: [tex]\((2, -5)\)[/tex] and [tex]\((2, -4)\)[/tex].
- Since the input 2 maps to two different outputs (-5 and -4), this relation is not a function.
2. Relation: [tex]\(\{(-1,5),(-4,8),(-4,14),(2,6)\}\)[/tex]
- Here, the input -4 appears twice: [tex]\((-4, 8)\)[/tex] and [tex]\((-4, 14)\)[/tex].
- Since the input -4 maps to two different outputs (8 and 14), this relation is not a function.
3. Relation: [tex]\(\{(1,3),(-2,-1),(4,3),(8,1)\}\)[/tex]
- All inputs are unique: 1, -2, 4, and 8.
- Since no input is repeated, each input maps to exactly one output.
- Therefore, this relation is a function.
4. Relation: [tex]\(\{(-2,-5),(7,1),(7,-3),(4,-1)\}\)[/tex]\
- Here, the input 7 appears twice: [tex]\((7, 1)\)[/tex] and [tex]\((7, -3)\)[/tex].
- Since the input 7 maps to two different outputs (1 and -3), this relation is not a function.
5. Relation: [tex]\(\{(8,8),(4,1),(1,6),(-5,6)\}\)[/tex]\
- All inputs are unique: 8, 4, 1, and -5.
- Since no input is repeated, each input maps to exactly one output.
- Therefore, this relation is a function.
Hence, the correct choices where the relation is a function are:
[tex]\[\{(1,3),(-2,-1),(4,3),(8,1)\}\][/tex]
[tex]\[\{(8,8),(4,1),(1,6),(-5,6)\}\][/tex]
The correct answer is:
[tex]\[ \boxed{3, 5} \][/tex]
Let's analyze each relation step by step:
1. Relation: [tex]\(\{(2,-5),(-2,0),(-3,6),(2,-4)\}\)[/tex]\
- Here, the input 2 appears twice: [tex]\((2, -5)\)[/tex] and [tex]\((2, -4)\)[/tex].
- Since the input 2 maps to two different outputs (-5 and -4), this relation is not a function.
2. Relation: [tex]\(\{(-1,5),(-4,8),(-4,14),(2,6)\}\)[/tex]
- Here, the input -4 appears twice: [tex]\((-4, 8)\)[/tex] and [tex]\((-4, 14)\)[/tex].
- Since the input -4 maps to two different outputs (8 and 14), this relation is not a function.
3. Relation: [tex]\(\{(1,3),(-2,-1),(4,3),(8,1)\}\)[/tex]
- All inputs are unique: 1, -2, 4, and 8.
- Since no input is repeated, each input maps to exactly one output.
- Therefore, this relation is a function.
4. Relation: [tex]\(\{(-2,-5),(7,1),(7,-3),(4,-1)\}\)[/tex]\
- Here, the input 7 appears twice: [tex]\((7, 1)\)[/tex] and [tex]\((7, -3)\)[/tex].
- Since the input 7 maps to two different outputs (1 and -3), this relation is not a function.
5. Relation: [tex]\(\{(8,8),(4,1),(1,6),(-5,6)\}\)[/tex]\
- All inputs are unique: 8, 4, 1, and -5.
- Since no input is repeated, each input maps to exactly one output.
- Therefore, this relation is a function.
Hence, the correct choices where the relation is a function are:
[tex]\[\{(1,3),(-2,-1),(4,3),(8,1)\}\][/tex]
[tex]\[\{(8,8),(4,1),(1,6),(-5,6)\}\][/tex]
The correct answer is:
[tex]\[ \boxed{3, 5} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.