Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which statements correctly describe the graph of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex], let's analyze its properties:
1. Domain:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. Since our function involves a cube root shifted by 1 inside, it remains defined for all [tex]\( x \)[/tex].
- Therefore, the domain of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is all real numbers.
2. Range:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] can take any real number value, as it is defined for all real numbers.
- Adding 2 shifts the entire range up by 2 units, but the overall set of possible [tex]\( y \)[/tex]-values remains all real numbers.
- Thus, the range of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is also all real numbers.
3. Behavior as [tex]\( x \)[/tex] increases:
- The function [tex]\( \sqrt[3]{x - 1} \)[/tex] is an increasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( \sqrt[3]{x - 1} \)[/tex] also increases.
- Adding 2 to [tex]\( \sqrt[3]{x - 1} \)[/tex] just shifts the graph vertically but does not affect its increasing nature.
- Thus, as [tex]\( x \)[/tex] increases, [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] also increases.
4. [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the equation [tex]\( y = \sqrt[3]{0 - 1} + 2 \)[/tex]:
[tex]\[ y = \sqrt[3]{-1} + 2 = -1 + 2 = 1 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 1) \)[/tex].
5. [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( y = 0 \)[/tex].
- Setting [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex]:
[tex]\[ 0 = \sqrt[3]{x - 1} + 2 \implies \sqrt[3]{x - 1} = -2 \][/tex]
[tex]\[ x - 1 = -8 \implies x = -7 \][/tex]
- Therefore, the [tex]\( x \)[/tex]-intercept is at [tex]\( (-7, 0) \)[/tex].
Given these analyses, the three correct statements are:
- The graph has a domain of all real numbers.
- The graph has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex].
- The graph has an [tex]\( x \)[/tex]-intercept at [tex]\( (-7, 0) \)[/tex].
1. Domain:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. Since our function involves a cube root shifted by 1 inside, it remains defined for all [tex]\( x \)[/tex].
- Therefore, the domain of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is all real numbers.
2. Range:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] can take any real number value, as it is defined for all real numbers.
- Adding 2 shifts the entire range up by 2 units, but the overall set of possible [tex]\( y \)[/tex]-values remains all real numbers.
- Thus, the range of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is also all real numbers.
3. Behavior as [tex]\( x \)[/tex] increases:
- The function [tex]\( \sqrt[3]{x - 1} \)[/tex] is an increasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( \sqrt[3]{x - 1} \)[/tex] also increases.
- Adding 2 to [tex]\( \sqrt[3]{x - 1} \)[/tex] just shifts the graph vertically but does not affect its increasing nature.
- Thus, as [tex]\( x \)[/tex] increases, [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] also increases.
4. [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the equation [tex]\( y = \sqrt[3]{0 - 1} + 2 \)[/tex]:
[tex]\[ y = \sqrt[3]{-1} + 2 = -1 + 2 = 1 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 1) \)[/tex].
5. [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( y = 0 \)[/tex].
- Setting [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex]:
[tex]\[ 0 = \sqrt[3]{x - 1} + 2 \implies \sqrt[3]{x - 1} = -2 \][/tex]
[tex]\[ x - 1 = -8 \implies x = -7 \][/tex]
- Therefore, the [tex]\( x \)[/tex]-intercept is at [tex]\( (-7, 0) \)[/tex].
Given these analyses, the three correct statements are:
- The graph has a domain of all real numbers.
- The graph has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex].
- The graph has an [tex]\( x \)[/tex]-intercept at [tex]\( (-7, 0) \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.