Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To simplify the expression [tex]\(\left(3xy^4\right)^2 \left(y^2\right)^3\)[/tex], we will break it down step-by-step.
1. Simplify [tex]\(\left(3xy^4\right)^2\)[/tex]:
- Apply the power of 2 to each term inside the parentheses.
- [tex]\((3xy^4)^2 = 3^2 \cdot (x)^2 \cdot (y^4)^2\)[/tex]
- Simplify each part:
[tex]\[3^2 = 9\][/tex]
[tex]\[x^2 = x^2\][/tex]
[tex]\[(y^4)^2 = y^{4 \cdot 2} = y^8\][/tex]
- Combine these:
[tex]\[(3xy^4)^2 = 9x^2y^8\][/tex]
2. Simplify [tex]\(\left(y^2\right)^3\)[/tex]:
- Apply the power of 3 to the term inside the parentheses.
- [tex]\((y^2)^3 = y^{2 \cdot 3} = y^6\)[/tex]
3. Combine the simplified parts:
- Multiply the results from the two simplified parts:
[tex]\[9x^2y^8 \cdot y^6\][/tex]
- Use the laws of exponents to combine [tex]\(y^8\)[/tex] and [tex]\(y^6\)[/tex]:
[tex]\[y^8 \cdot y^6 = y^{8 + 6} = y^{14}\][/tex]
Therefore, the combined expression is:
[tex]\[9x^2y^{14}\][/tex]
4. Choose the correct answer:
- The final simplified expression is [tex]\(9x^2y^{14}\)[/tex], which corresponds to the second option.
Hence, the correct answer is:
[tex]\[\boxed{9x^2y^{14}}\][/tex]
1. Simplify [tex]\(\left(3xy^4\right)^2\)[/tex]:
- Apply the power of 2 to each term inside the parentheses.
- [tex]\((3xy^4)^2 = 3^2 \cdot (x)^2 \cdot (y^4)^2\)[/tex]
- Simplify each part:
[tex]\[3^2 = 9\][/tex]
[tex]\[x^2 = x^2\][/tex]
[tex]\[(y^4)^2 = y^{4 \cdot 2} = y^8\][/tex]
- Combine these:
[tex]\[(3xy^4)^2 = 9x^2y^8\][/tex]
2. Simplify [tex]\(\left(y^2\right)^3\)[/tex]:
- Apply the power of 3 to the term inside the parentheses.
- [tex]\((y^2)^3 = y^{2 \cdot 3} = y^6\)[/tex]
3. Combine the simplified parts:
- Multiply the results from the two simplified parts:
[tex]\[9x^2y^8 \cdot y^6\][/tex]
- Use the laws of exponents to combine [tex]\(y^8\)[/tex] and [tex]\(y^6\)[/tex]:
[tex]\[y^8 \cdot y^6 = y^{8 + 6} = y^{14}\][/tex]
Therefore, the combined expression is:
[tex]\[9x^2y^{14}\][/tex]
4. Choose the correct answer:
- The final simplified expression is [tex]\(9x^2y^{14}\)[/tex], which corresponds to the second option.
Hence, the correct answer is:
[tex]\[\boxed{9x^2y^{14}}\][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.