Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the area of a rectangle when given the length and width as functions of [tex]\( x \)[/tex], we simply multiply these functions together.
Given:
- [tex]\( L(x) = 5x \)[/tex] (Length as a function of [tex]\( x \)[/tex])
- [tex]\( W(x) = 2x^2 - 4x + 13 \)[/tex] (Width as a function of [tex]\( x \)[/tex])
The area [tex]\( A(x) \)[/tex] of the rectangle as a function of [tex]\( x \)[/tex] is given by:
[tex]\[ A(x) = L(x) \times W(x) \][/tex]
Step-by-Step Solution:
1. Substitute the expressions for [tex]\( L(x) \)[/tex] and [tex]\( W(x) \)[/tex] into the area function:
[tex]\[ A(x) = (5x) \times (2x^2 - 4x + 13) \][/tex]
2. Distribute [tex]\( 5x \)[/tex] to each term inside the parentheses:
[tex]\[ A(x) = 5x \times 2x^2 + 5x \times (-4x) + 5x \times 13 \][/tex]
3. Multiply the terms:
[tex]\[ 5x \times 2x^2 = 10x^3 \][/tex]
[tex]\[ 5x \times (-4x) = -20x^2 \][/tex]
[tex]\[ 5x \times 13 = 65x \][/tex]
4. Combine the results:
[tex]\[ A(x) = 10x^3 - 20x^2 + 65x \][/tex]
Thus, the area of the rectangle in terms of [tex]\( x \)[/tex] is:
[tex]\[ 10x^3 - 20x^2 + 65x \][/tex]
So, the correct answer is:
[tex]\[ W(x) = 10x^3 - 20x^2 + 65x \][/tex]
Given:
- [tex]\( L(x) = 5x \)[/tex] (Length as a function of [tex]\( x \)[/tex])
- [tex]\( W(x) = 2x^2 - 4x + 13 \)[/tex] (Width as a function of [tex]\( x \)[/tex])
The area [tex]\( A(x) \)[/tex] of the rectangle as a function of [tex]\( x \)[/tex] is given by:
[tex]\[ A(x) = L(x) \times W(x) \][/tex]
Step-by-Step Solution:
1. Substitute the expressions for [tex]\( L(x) \)[/tex] and [tex]\( W(x) \)[/tex] into the area function:
[tex]\[ A(x) = (5x) \times (2x^2 - 4x + 13) \][/tex]
2. Distribute [tex]\( 5x \)[/tex] to each term inside the parentheses:
[tex]\[ A(x) = 5x \times 2x^2 + 5x \times (-4x) + 5x \times 13 \][/tex]
3. Multiply the terms:
[tex]\[ 5x \times 2x^2 = 10x^3 \][/tex]
[tex]\[ 5x \times (-4x) = -20x^2 \][/tex]
[tex]\[ 5x \times 13 = 65x \][/tex]
4. Combine the results:
[tex]\[ A(x) = 10x^3 - 20x^2 + 65x \][/tex]
Thus, the area of the rectangle in terms of [tex]\( x \)[/tex] is:
[tex]\[ 10x^3 - 20x^2 + 65x \][/tex]
So, the correct answer is:
[tex]\[ W(x) = 10x^3 - 20x^2 + 65x \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.