Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To simplify the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex]:
1. Identify the negative exponent property:
Recall that [tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]. Hence, [tex]\(a^{-10} = \frac{1}{a^{10}}\)[/tex].
2. Rewrite the expression using the property:
Substituting [tex]\(a^{-10}\)[/tex] with [tex]\(\frac{1}{a^{10}}\)[/tex] in the denominator, the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex] can be rewritten as:
[tex]\[ \frac{4b}{\frac{1}{a^{10}}} \][/tex]
3. Simplify the complex fraction:
Dividing by a fraction is equivalent to multiplying by its reciprocal. Thus, dividing by [tex]\(\frac{1}{a^{10}}\)[/tex] is the same as multiplying by [tex]\(a^{10}\)[/tex]:
[tex]\[ \frac{4b}{\frac{1}{a^{10}}} = 4b \cdot a^{10} \][/tex]
4. Combine the terms:
Write the simplified form by combining the constants and variables:
[tex]\[ 4b \cdot a^{10} = 4a^{10}b \][/tex]
So, the correct simplification of the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex] is:
[tex]\[ 4a^{10}b \][/tex]
Hence, the correct answer is:
[tex]\[4a^{10}b\][/tex]
1. Identify the negative exponent property:
Recall that [tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]. Hence, [tex]\(a^{-10} = \frac{1}{a^{10}}\)[/tex].
2. Rewrite the expression using the property:
Substituting [tex]\(a^{-10}\)[/tex] with [tex]\(\frac{1}{a^{10}}\)[/tex] in the denominator, the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex] can be rewritten as:
[tex]\[ \frac{4b}{\frac{1}{a^{10}}} \][/tex]
3. Simplify the complex fraction:
Dividing by a fraction is equivalent to multiplying by its reciprocal. Thus, dividing by [tex]\(\frac{1}{a^{10}}\)[/tex] is the same as multiplying by [tex]\(a^{10}\)[/tex]:
[tex]\[ \frac{4b}{\frac{1}{a^{10}}} = 4b \cdot a^{10} \][/tex]
4. Combine the terms:
Write the simplified form by combining the constants and variables:
[tex]\[ 4b \cdot a^{10} = 4a^{10}b \][/tex]
So, the correct simplification of the expression [tex]\(\frac{4b}{a^{-10}}\)[/tex] is:
[tex]\[ 4a^{10}b \][/tex]
Hence, the correct answer is:
[tex]\[4a^{10}b\][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.