Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given equations exemplifies an inverse variation between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we need to recall the definition of inverse variation. In inverse variation, the product of the two variables is equal to a constant. Mathematically, this relationship can be expressed as:
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's evaluate each of the given options one-by-one:
Option A: [tex]\( y = \frac{x}{9} \)[/tex]
- This equation represents a direct variation rather than an inverse variation. Here, [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex], but scaled by the factor [tex]\(\frac{1}{9}\)[/tex].
Option B: [tex]\( y = 9x \)[/tex]
- This equation also represents a direct variation. In this case, [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex] with a proportionality factor of 9.
Option C: [tex]\( y = \frac{9}{x} \)[/tex]
- This equation fits the form [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k = 9 \)[/tex]. It describes an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Here, the product [tex]\( xy = 9 \)[/tex], which is a constant.
Option D: [tex]\( y = x + 9 \)[/tex]
- This equation represents a linear relationship where [tex]\( y \)[/tex] is shifted by 9 units from [tex]\( x \)[/tex]. It is neither direct nor inverse variation.
Among the given options, option C: [tex]\( y = \frac{9}{x} \)[/tex] is the equation that illustrates inverse variation because it adheres to the form [tex]\( y = \frac{k}{x} \)[/tex].
Thus, the correct answer is:
Option C: [tex]\( y = \frac{9}{x} \)[/tex].
[tex]\[ y = \frac{k}{x} \][/tex]
where [tex]\( k \)[/tex] is a constant.
Let's evaluate each of the given options one-by-one:
Option A: [tex]\( y = \frac{x}{9} \)[/tex]
- This equation represents a direct variation rather than an inverse variation. Here, [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex], but scaled by the factor [tex]\(\frac{1}{9}\)[/tex].
Option B: [tex]\( y = 9x \)[/tex]
- This equation also represents a direct variation. In this case, [tex]\( y \)[/tex] is directly proportional to [tex]\( x \)[/tex] with a proportionality factor of 9.
Option C: [tex]\( y = \frac{9}{x} \)[/tex]
- This equation fits the form [tex]\( y = \frac{k}{x} \)[/tex], where [tex]\( k = 9 \)[/tex]. It describes an inverse variation between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. Here, the product [tex]\( xy = 9 \)[/tex], which is a constant.
Option D: [tex]\( y = x + 9 \)[/tex]
- This equation represents a linear relationship where [tex]\( y \)[/tex] is shifted by 9 units from [tex]\( x \)[/tex]. It is neither direct nor inverse variation.
Among the given options, option C: [tex]\( y = \frac{9}{x} \)[/tex] is the equation that illustrates inverse variation because it adheres to the form [tex]\( y = \frac{k}{x} \)[/tex].
Thus, the correct answer is:
Option C: [tex]\( y = \frac{9}{x} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.