At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze how Samuel wrote the equation of the line in slope-intercept form using the given points [tex]\((-7, 13)\)[/tex], [tex]\((-5, 5)\)[/tex], [tex]\((-3, -3)\)[/tex], and [tex]\((-1, -11)\)[/tex]:
Step 1: Calculate the Slope [tex]\( m \)[/tex]
To find the slope of the line, Samuel used two points, [tex]\((-5, 5)\)[/tex] and [tex]\((-3, -3)\)[/tex].
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{-3 - 5}{-3 - (-5)} = \frac{-8}{2} = -4 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\( -4 \)[/tex].
Step 2: Calculate the y-intercept [tex]\( b \)[/tex]
Now that we have the slope, we need to find the y-intercept [tex]\( b \)[/tex]. We use one of the points on the line, for instance, [tex]\((-5, 5)\)[/tex].
The slope-intercept form of a line is:
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( m = -4 \)[/tex], [tex]\( x = -5 \)[/tex], and [tex]\( y = 5 \)[/tex] into the equation and solve for [tex]\( b \)[/tex]:
[tex]\[ 5 = -4(-5) + b \][/tex]
[tex]\[ 5 = 20 + b \][/tex]
[tex]\[ b = 5 - 20 \][/tex]
[tex]\[ b = -15 \][/tex]
Thus, the y-intercept [tex]\( b \)[/tex] is [tex]\( -15 \)[/tex].
Step 3: Write the equation in slope-intercept form
Now that we have both the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex], we can write the equation of the line in the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = -4x - 15 \][/tex]
So, the equation of the line is:
[tex]\[ y = -4x - 15 \][/tex]
There was a slight typo in Samuel's final equation; it should be [tex]\( y = -4x - 15 \)[/tex] instead of [tex]\( y = -15x - 4 \)[/tex].
In summary, we determined the slope to be [tex]\( -4 \)[/tex], the y-intercept [tex]\( b \)[/tex] to be [tex]\( -15 \)[/tex], and combined them to get the equation [tex]\( y = -4x - 15 \)[/tex].
Step 1: Calculate the Slope [tex]\( m \)[/tex]
To find the slope of the line, Samuel used two points, [tex]\((-5, 5)\)[/tex] and [tex]\((-3, -3)\)[/tex].
The formula for the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{-3 - 5}{-3 - (-5)} = \frac{-8}{2} = -4 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\( -4 \)[/tex].
Step 2: Calculate the y-intercept [tex]\( b \)[/tex]
Now that we have the slope, we need to find the y-intercept [tex]\( b \)[/tex]. We use one of the points on the line, for instance, [tex]\((-5, 5)\)[/tex].
The slope-intercept form of a line is:
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( m = -4 \)[/tex], [tex]\( x = -5 \)[/tex], and [tex]\( y = 5 \)[/tex] into the equation and solve for [tex]\( b \)[/tex]:
[tex]\[ 5 = -4(-5) + b \][/tex]
[tex]\[ 5 = 20 + b \][/tex]
[tex]\[ b = 5 - 20 \][/tex]
[tex]\[ b = -15 \][/tex]
Thus, the y-intercept [tex]\( b \)[/tex] is [tex]\( -15 \)[/tex].
Step 3: Write the equation in slope-intercept form
Now that we have both the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex], we can write the equation of the line in the slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = -4x - 15 \][/tex]
So, the equation of the line is:
[tex]\[ y = -4x - 15 \][/tex]
There was a slight typo in Samuel's final equation; it should be [tex]\( y = -4x - 15 \)[/tex] instead of [tex]\( y = -15x - 4 \)[/tex].
In summary, we determined the slope to be [tex]\( -4 \)[/tex], the y-intercept [tex]\( b \)[/tex] to be [tex]\( -15 \)[/tex], and combined them to get the equation [tex]\( y = -4x - 15 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.