Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the given system of equations step-by-step:
[tex]\[ \begin{array}{l} 1) \, 3x + y = 2x + 3y \\ 2) \, 2x + 3y = x + y + 44 \\ \end{array} \][/tex]
Step 1: Solve the first equation
[tex]\[ 3x + y = 2x + 3y \][/tex]
Subtract [tex]\(2x\)[/tex] and [tex]\(y\)[/tex] from both sides:
[tex]\[ 3x - 2x + y - y = 2x - 2x + 3y - y \][/tex]
This simplifies to:
[tex]\[ x = 2y \][/tex]
Step 2: Substitute [tex]\( x = 2y \)[/tex] into the second equation
[tex]\[ 2x + 3y = x + y + 44 \][/tex]
Replace [tex]\( x \)[/tex] with [tex]\( 2y \)[/tex]:
[tex]\[ 2(2y) + 3y = 2y + y + 44 \][/tex]
Simplify:
[tex]\[ 4y + 3y = 2y + y + 44 \][/tex]
Combine like terms:
[tex]\[ 7y = 3y + 44 \][/tex]
Subtract [tex]\( 3y \)[/tex] from both sides:
[tex]\[ 7y - 3y = 44 \][/tex]
This simplifies to:
[tex]\[ 4y = 44 \][/tex]
Divide both sides by 4:
[tex]\[ y = 11 \][/tex]
Step 3: Substitute [tex]\( y = 11 \)[/tex] back into [tex]\( x = 2y \)[/tex]
[tex]\[ x = 2(11) \][/tex]
This simplifies to:
[tex]\[ x = 22 \][/tex]
Solution:
The values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are:
[tex]\[ x = 22 \][/tex]
[tex]\[ y = 11 \][/tex]
Thus, the solution to the system of equations is [tex]\( (22, 11) \)[/tex].
[tex]\[ \begin{array}{l} 1) \, 3x + y = 2x + 3y \\ 2) \, 2x + 3y = x + y + 44 \\ \end{array} \][/tex]
Step 1: Solve the first equation
[tex]\[ 3x + y = 2x + 3y \][/tex]
Subtract [tex]\(2x\)[/tex] and [tex]\(y\)[/tex] from both sides:
[tex]\[ 3x - 2x + y - y = 2x - 2x + 3y - y \][/tex]
This simplifies to:
[tex]\[ x = 2y \][/tex]
Step 2: Substitute [tex]\( x = 2y \)[/tex] into the second equation
[tex]\[ 2x + 3y = x + y + 44 \][/tex]
Replace [tex]\( x \)[/tex] with [tex]\( 2y \)[/tex]:
[tex]\[ 2(2y) + 3y = 2y + y + 44 \][/tex]
Simplify:
[tex]\[ 4y + 3y = 2y + y + 44 \][/tex]
Combine like terms:
[tex]\[ 7y = 3y + 44 \][/tex]
Subtract [tex]\( 3y \)[/tex] from both sides:
[tex]\[ 7y - 3y = 44 \][/tex]
This simplifies to:
[tex]\[ 4y = 44 \][/tex]
Divide both sides by 4:
[tex]\[ y = 11 \][/tex]
Step 3: Substitute [tex]\( y = 11 \)[/tex] back into [tex]\( x = 2y \)[/tex]
[tex]\[ x = 2(11) \][/tex]
This simplifies to:
[tex]\[ x = 22 \][/tex]
Solution:
The values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are:
[tex]\[ x = 22 \][/tex]
[tex]\[ y = 11 \][/tex]
Thus, the solution to the system of equations is [tex]\( (22, 11) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.