Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's address each question step-by-step.
---
### Question 26:
Find the rationalizing factor of [tex]\(\sqrt[3]{9}\)[/tex].
To rationalize [tex]\(\sqrt[3]{9}\)[/tex], we need a factor which, when multiplied by [tex]\(\sqrt[3]{9}\)[/tex], results in a rational number.
The cube root of 9 is [tex]\(\sqrt[3]{9}\)[/tex]. To rationalize a cube root, we look for another cube root that, when multiplied by [tex]\(\sqrt[3]{9}\)[/tex], yields a perfect cube (i.e., a rational number).
Consider [tex]\(\sqrt[3]{9} \times \sqrt[3]{3} = \sqrt[3]{27} = 3\)[/tex].
So, the rationalizing factor here is [tex]\(\sqrt[3]{3}\)[/tex].
Thus, the answer is:
a) [tex]\(\sqrt[3]{3}\)[/tex]
---
### Question 27:
Simplify [tex]\(\frac{a^8 - b^8}{(a^4 + b^4)(a^2 + b^2)}\)[/tex] given [tex]\(a \neq 0\)[/tex] and [tex]\(b \neq 0\)[/tex].
We start with the numerator:
[tex]\[ a^8 - b^8 \][/tex]
This expression can be factored using the difference of powers formula:
[tex]\[ a^8 - b^8 = (a^4 - b^4)(a^4 + b^4) \][/tex]
Next, factor [tex]\(a^4 - b^4\)[/tex]:
[tex]\[ a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) \][/tex]
Thus,
[tex]\[ a^8 - b^8 = (a^2 - b^2)(a^2 + b^2)(a^4 + b^4) \][/tex]
Now, substituting this into our original fraction:
[tex]\[ \frac{a^8 - b^8}{(a^4 + b^4)(a^2 + b^2)} = \frac{(a^2 - b^2)(a^2 + b^2)(a^4 + b^4)}{(a^4 + b^4)(a^2 + b^2)} \][/tex]
Notice that [tex]\( (a^4 + b^4) \)[/tex] and [tex]\( (a^2 + b^2) \)[/tex] cancel out:
[tex]\[ \frac{(a^2 - b^2)\cancel{(a^2 + b^2)}\cancel{(a^4 + b^4)}}{\cancel{(a^4 + b^4)}\cancel{(a^2 + b^2)}} = a^2 - b^2 \][/tex]
Thus, the simplified expression is:
c) [tex]\(a^2 - b^2\)[/tex]
---
So, the answers are:
- For Question 26: a) [tex]\(\sqrt[3]{3}\)[/tex]
- For Question 27: c) [tex]\(a^2 - b^2\)[/tex]
---
### Question 26:
Find the rationalizing factor of [tex]\(\sqrt[3]{9}\)[/tex].
To rationalize [tex]\(\sqrt[3]{9}\)[/tex], we need a factor which, when multiplied by [tex]\(\sqrt[3]{9}\)[/tex], results in a rational number.
The cube root of 9 is [tex]\(\sqrt[3]{9}\)[/tex]. To rationalize a cube root, we look for another cube root that, when multiplied by [tex]\(\sqrt[3]{9}\)[/tex], yields a perfect cube (i.e., a rational number).
Consider [tex]\(\sqrt[3]{9} \times \sqrt[3]{3} = \sqrt[3]{27} = 3\)[/tex].
So, the rationalizing factor here is [tex]\(\sqrt[3]{3}\)[/tex].
Thus, the answer is:
a) [tex]\(\sqrt[3]{3}\)[/tex]
---
### Question 27:
Simplify [tex]\(\frac{a^8 - b^8}{(a^4 + b^4)(a^2 + b^2)}\)[/tex] given [tex]\(a \neq 0\)[/tex] and [tex]\(b \neq 0\)[/tex].
We start with the numerator:
[tex]\[ a^8 - b^8 \][/tex]
This expression can be factored using the difference of powers formula:
[tex]\[ a^8 - b^8 = (a^4 - b^4)(a^4 + b^4) \][/tex]
Next, factor [tex]\(a^4 - b^4\)[/tex]:
[tex]\[ a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) \][/tex]
Thus,
[tex]\[ a^8 - b^8 = (a^2 - b^2)(a^2 + b^2)(a^4 + b^4) \][/tex]
Now, substituting this into our original fraction:
[tex]\[ \frac{a^8 - b^8}{(a^4 + b^4)(a^2 + b^2)} = \frac{(a^2 - b^2)(a^2 + b^2)(a^4 + b^4)}{(a^4 + b^4)(a^2 + b^2)} \][/tex]
Notice that [tex]\( (a^4 + b^4) \)[/tex] and [tex]\( (a^2 + b^2) \)[/tex] cancel out:
[tex]\[ \frac{(a^2 - b^2)\cancel{(a^2 + b^2)}\cancel{(a^4 + b^4)}}{\cancel{(a^4 + b^4)}\cancel{(a^2 + b^2)}} = a^2 - b^2 \][/tex]
Thus, the simplified expression is:
c) [tex]\(a^2 - b^2\)[/tex]
---
So, the answers are:
- For Question 26: a) [tex]\(\sqrt[3]{3}\)[/tex]
- For Question 27: c) [tex]\(a^2 - b^2\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.