Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the function representing the total volume of water pumped, [tex]\( V(x) \)[/tex], we need to integrate the rate function, [tex]\( R(x) = 7x^5 + 5 \)[/tex]. The integration of [tex]\( R(x) \)[/tex] with respect to [tex]\( x \)[/tex] gives us the total volume of water pumped up to time [tex]\( x \)[/tex].
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.