Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to find the perimeter of a triangle when its sides are in the extended ratio of [tex]\(3:4:10\)[/tex] and the shortest side is given as 9 inches.
Let's break it down step-by-step:
1. Identify Given Information:
- The side ratios of the triangle are [tex]\(3:4:10\)[/tex].
- The shortest side of the triangle, which corresponds to the first ratio value, is 9 inches.
2. Express Sides in Terms of a Common Multiplier:
Since the sides are in the ratio [tex]\(3:4:10\)[/tex], we can express the sides of the triangle as:
[tex]\[ 3x, \; 4x, \; 10x \][/tex]
where [tex]\(x\)[/tex] is the common multiplier.
3. Find the Value of [tex]\(x\)[/tex]:
The shortest side is given as 9 inches, which corresponds to [tex]\(3x\)[/tex]. Therefore, we can solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = 9 \][/tex]
Dividing both sides by 3, we get:
[tex]\[ x = 3 ] 4. Calculate the Lengths of the Other Sides: Using the value of \(x\), we can find the lengths of the other sides: \[ \text{First side} = 3x = 3 \cdot 3 = 9 \text{ inches} \][/tex]
[tex]\[ \text{Second side} = 4x = 4 \cdot 3 = 12 \text{ inches} \][/tex]
[tex]\[ \text{Third side} = 10x = 10 \cdot 3 = 30 \text{ inches} \][/tex]
5. Calculate the Perimeter of the Triangle:
The perimeter of the triangle is the sum of all its sides:
[tex]\[ \text{Perimeter} = 9 + 12 + 30 = 51 \text{ inches} \][/tex]
Therefore, the perimeter of the triangle is [tex]\( 51 \)[/tex] inches.
Let's break it down step-by-step:
1. Identify Given Information:
- The side ratios of the triangle are [tex]\(3:4:10\)[/tex].
- The shortest side of the triangle, which corresponds to the first ratio value, is 9 inches.
2. Express Sides in Terms of a Common Multiplier:
Since the sides are in the ratio [tex]\(3:4:10\)[/tex], we can express the sides of the triangle as:
[tex]\[ 3x, \; 4x, \; 10x \][/tex]
where [tex]\(x\)[/tex] is the common multiplier.
3. Find the Value of [tex]\(x\)[/tex]:
The shortest side is given as 9 inches, which corresponds to [tex]\(3x\)[/tex]. Therefore, we can solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = 9 \][/tex]
Dividing both sides by 3, we get:
[tex]\[ x = 3 ] 4. Calculate the Lengths of the Other Sides: Using the value of \(x\), we can find the lengths of the other sides: \[ \text{First side} = 3x = 3 \cdot 3 = 9 \text{ inches} \][/tex]
[tex]\[ \text{Second side} = 4x = 4 \cdot 3 = 12 \text{ inches} \][/tex]
[tex]\[ \text{Third side} = 10x = 10 \cdot 3 = 30 \text{ inches} \][/tex]
5. Calculate the Perimeter of the Triangle:
The perimeter of the triangle is the sum of all its sides:
[tex]\[ \text{Perimeter} = 9 + 12 + 30 = 51 \text{ inches} \][/tex]
Therefore, the perimeter of the triangle is [tex]\( 51 \)[/tex] inches.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.