Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which statements are true, let's analyze each function in detail.
1. Statement: [tex]\( f(x) = 2 \sqrt{x} \)[/tex] has the same domain and range as [tex]\( f(x) = \sqrt{x} \)[/tex].
- Domain Analysis: The domain of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( x \geq 0 \)[/tex] because we cannot take the square root of a negative number. The function [tex]\( 2 \sqrt{x} \)[/tex] also has the same domain [tex]\( x \geq 0 \)[/tex]. So, the domains are identical.
- Range Analysis: The range of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex] because square roots yield non-negative results. For [tex]\( 2 \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by 2, therefore the outputs are also non-negative but scaled up. Thus, the range of [tex]\( 2 \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], but the actual values are different due to the multiplication by 2. So, the ranges are not the same.
- Conclusion: False
2. Statement: [tex]\( f(x) = -2 \sqrt{x} \)[/tex] has the same domain and range as [tex]\( f(x) = \sqrt{x} \)[/tex].
- Domain Analysis: Like before, the function [tex]\( -2 \sqrt{x} \)[/tex] has the same domain [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], but for [tex]\( -2 \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by -2, thereby producing non-positive results. Thus, the range of [tex]\( -2 \sqrt{x} \)[/tex] is [tex]\( y \leq 0 \)[/tex], which is different from [tex]\( f(x) = \sqrt{x} \)[/tex].
- Conclusion: False
3. Statement: [tex]\( f(x) = -\sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- Domain Analysis: The domain for both [tex]\( -\sqrt{x} \)[/tex] and [tex]\( \sqrt{x} \)[/tex] is [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], while the range of [tex]\( -\sqrt{x} \)[/tex] is [tex]\( y \leq 0 \)[/tex] because the outputs are non-positive (the values of [tex]\( \sqrt{x} \)[/tex] are negated).
- Conclusion: True
4. Statement: [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- Domain Analysis: Both [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] and [tex]\( \sqrt{x} \)[/tex] have the same domain [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex]. For [tex]\( \frac{1}{2} \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by [tex]\(\frac{1}{2}\)[/tex], producing non-negative results, but scaled down. So, the range is still [tex]\( y \geq 0 \)[/tex], though the actual values are different since they are halved.
- Conclusion: True
Thus, the true statements are:
- [tex]\( f(x) = -\sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
Therefore, the indices of the true statements are 3 and 4.
1. Statement: [tex]\( f(x) = 2 \sqrt{x} \)[/tex] has the same domain and range as [tex]\( f(x) = \sqrt{x} \)[/tex].
- Domain Analysis: The domain of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( x \geq 0 \)[/tex] because we cannot take the square root of a negative number. The function [tex]\( 2 \sqrt{x} \)[/tex] also has the same domain [tex]\( x \geq 0 \)[/tex]. So, the domains are identical.
- Range Analysis: The range of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex] because square roots yield non-negative results. For [tex]\( 2 \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by 2, therefore the outputs are also non-negative but scaled up. Thus, the range of [tex]\( 2 \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], but the actual values are different due to the multiplication by 2. So, the ranges are not the same.
- Conclusion: False
2. Statement: [tex]\( f(x) = -2 \sqrt{x} \)[/tex] has the same domain and range as [tex]\( f(x) = \sqrt{x} \)[/tex].
- Domain Analysis: Like before, the function [tex]\( -2 \sqrt{x} \)[/tex] has the same domain [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( f(x) = \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], but for [tex]\( -2 \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by -2, thereby producing non-positive results. Thus, the range of [tex]\( -2 \sqrt{x} \)[/tex] is [tex]\( y \leq 0 \)[/tex], which is different from [tex]\( f(x) = \sqrt{x} \)[/tex].
- Conclusion: False
3. Statement: [tex]\( f(x) = -\sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- Domain Analysis: The domain for both [tex]\( -\sqrt{x} \)[/tex] and [tex]\( \sqrt{x} \)[/tex] is [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex], while the range of [tex]\( -\sqrt{x} \)[/tex] is [tex]\( y \leq 0 \)[/tex] because the outputs are non-positive (the values of [tex]\( \sqrt{x} \)[/tex] are negated).
- Conclusion: True
4. Statement: [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- Domain Analysis: Both [tex]\( \frac{1}{2} \sqrt{x} \)[/tex] and [tex]\( \sqrt{x} \)[/tex] have the same domain [tex]\( x \geq 0 \)[/tex].
- Range Analysis: The range of [tex]\( \sqrt{x} \)[/tex] is [tex]\( y \geq 0 \)[/tex]. For [tex]\( \frac{1}{2} \sqrt{x} \)[/tex], every value of [tex]\( \sqrt{x} \)[/tex] is multiplied by [tex]\(\frac{1}{2}\)[/tex], producing non-negative results, but scaled down. So, the range is still [tex]\( y \geq 0 \)[/tex], though the actual values are different since they are halved.
- Conclusion: True
Thus, the true statements are:
- [tex]\( f(x) = -\sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
- [tex]\( f(x) = \frac{1}{2} \sqrt{x} \)[/tex] has the same domain as [tex]\( f(x) = \sqrt{x} \)[/tex], but a different range.
Therefore, the indices of the true statements are 3 and 4.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.