Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the question, we will determine the equation of a line passing through point [tex]\( C(-3, -2) \)[/tex] and perpendicular to line segment [tex]\(\overline{AB}\)[/tex].
In order to construct this line, we need to find the slope of line [tex]\(\overline{AB}\)[/tex] and subsequently, calculate the slope of the line that is perpendicular to it.
1. Find the slope of [tex]\(\overline{AB}\)[/tex]:
The slope [tex]\( m \)[/tex] of a line through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( A(2, 9) \)[/tex] and [tex]\( B(8, 4) \)[/tex]:
[tex]\[ \text{slope}_{AB} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Calculate the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of that line's slope. Therefore, if the slope of [tex]\(\overline{AB}\)[/tex] is [tex]\(\frac{-5}{6}\)[/tex], then the slope of the line perpendicular to [tex]\(\overline{AB}\)[/tex] is:
[tex]\[ \text{slope}_{\text{perpendicular}} = -\frac{1}{\left( \frac{-5}{6} \right)} = \frac{6}{5} \][/tex]
3. Form the equation of the line:
Using the point-slope form of a line equation [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line, and [tex]\( m \)[/tex] is the slope:
[tex]\[ y - (-2) = \left( \frac{6}{5} \right)(x - (-3)) \][/tex]
Simplifying inside the parentheses:
[tex]\[ y + 2 = \frac{6}{5}(x + 3) \][/tex]
4. Express the equation in slope-intercept form:
Expand and simplify:
[tex]\[ y + 2 = \frac{6}{5}x + \frac{6}{5} \times 3 \][/tex]
[tex]\[ y + 2 = \frac{6}{5}x + \frac{18}{5} \][/tex]
Subtract 2 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - 2 \][/tex]
Converting 2 into a fraction with denominator 5:
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - \frac{10}{5} \][/tex]
[tex]\[ y = \frac{6}{5}x + \frac{8}{5} \][/tex]
So, the equation of the line passing through point [tex]\( C \)[/tex] and perpendicular to [tex]\(\overline{AB}\)[/tex] is:
[tex]\[ y = \frac{6}{5}x + \frac{8}{5} \][/tex]
Therefore, the boxes should be filled as follows:
[tex]\[ y = 1.2x + 1.6 \][/tex]
In order to construct this line, we need to find the slope of line [tex]\(\overline{AB}\)[/tex] and subsequently, calculate the slope of the line that is perpendicular to it.
1. Find the slope of [tex]\(\overline{AB}\)[/tex]:
The slope [tex]\( m \)[/tex] of a line through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( A(2, 9) \)[/tex] and [tex]\( B(8, 4) \)[/tex]:
[tex]\[ \text{slope}_{AB} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Calculate the slope of the perpendicular line:
The slope of a line that is perpendicular to another line is the negative reciprocal of that line's slope. Therefore, if the slope of [tex]\(\overline{AB}\)[/tex] is [tex]\(\frac{-5}{6}\)[/tex], then the slope of the line perpendicular to [tex]\(\overline{AB}\)[/tex] is:
[tex]\[ \text{slope}_{\text{perpendicular}} = -\frac{1}{\left( \frac{-5}{6} \right)} = \frac{6}{5} \][/tex]
3. Form the equation of the line:
Using the point-slope form of a line equation [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line, and [tex]\( m \)[/tex] is the slope:
[tex]\[ y - (-2) = \left( \frac{6}{5} \right)(x - (-3)) \][/tex]
Simplifying inside the parentheses:
[tex]\[ y + 2 = \frac{6}{5}(x + 3) \][/tex]
4. Express the equation in slope-intercept form:
Expand and simplify:
[tex]\[ y + 2 = \frac{6}{5}x + \frac{6}{5} \times 3 \][/tex]
[tex]\[ y + 2 = \frac{6}{5}x + \frac{18}{5} \][/tex]
Subtract 2 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - 2 \][/tex]
Converting 2 into a fraction with denominator 5:
[tex]\[ y = \frac{6}{5}x + \frac{18}{5} - \frac{10}{5} \][/tex]
[tex]\[ y = \frac{6}{5}x + \frac{8}{5} \][/tex]
So, the equation of the line passing through point [tex]\( C \)[/tex] and perpendicular to [tex]\(\overline{AB}\)[/tex] is:
[tex]\[ y = \frac{6}{5}x + \frac{8}{5} \][/tex]
Therefore, the boxes should be filled as follows:
[tex]\[ y = 1.2x + 1.6 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.