Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The formula [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex] is used to complete the square in algebra.
Here is a detailed, step-by-step explanation:
1. Understanding "Completing the Square":
"Completing the square" is a method used in algebra to transform a quadratic expression of the form [tex]\( ax^2 + bx + c \)[/tex] into a perfect square trinomial. A perfect square trinomial is an expression that can be written as the square of a binomial.
2. Form of the Quadratic Expression:
Consider the quadratic expression [tex]\( x^2 + bx \)[/tex]. To complete the square, we need to transform it into the form [tex]\( (x + d)^2 \)[/tex], where [tex]\( d \)[/tex] is some number related to [tex]\( b \)[/tex].
3. Isolate the Terms:
Start with the expression [tex]\( x^2 + bx \)[/tex].
4. Determine the Value to Complete the Square:
To find the appropriate number to add and subtract (i.e., the value of [tex]\( c \)[/tex]), we use the formula [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex]. This value of [tex]\( c \)[/tex] is what makes the expression a perfect square trinomial.
5. Applying the Formula:
Using the value obtained from [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex]:
[tex]\[ x^2 + bx + \left(\frac{b}{2}\right)^2 \][/tex]
This trinomial can now be written as a perfect square:
[tex]\[ \left(x + \frac{b}{2}\right)^2 \][/tex]
6. Example:
For instance, if [tex]\( b = 6 \)[/tex]:
[tex]\[ c = \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
The original expression [tex]\( x^2 + 6x \)[/tex] can be transformed into:
[tex]\[ x^2 + 6x + 9 \][/tex]
Which can be written as:
[tex]\[ (x + 3)^2 \][/tex]
Thus, the formula [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex] is used to complete the square in algebra by transforming a quadratic expression into a perfect square trinomial.
Here is a detailed, step-by-step explanation:
1. Understanding "Completing the Square":
"Completing the square" is a method used in algebra to transform a quadratic expression of the form [tex]\( ax^2 + bx + c \)[/tex] into a perfect square trinomial. A perfect square trinomial is an expression that can be written as the square of a binomial.
2. Form of the Quadratic Expression:
Consider the quadratic expression [tex]\( x^2 + bx \)[/tex]. To complete the square, we need to transform it into the form [tex]\( (x + d)^2 \)[/tex], where [tex]\( d \)[/tex] is some number related to [tex]\( b \)[/tex].
3. Isolate the Terms:
Start with the expression [tex]\( x^2 + bx \)[/tex].
4. Determine the Value to Complete the Square:
To find the appropriate number to add and subtract (i.e., the value of [tex]\( c \)[/tex]), we use the formula [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex]. This value of [tex]\( c \)[/tex] is what makes the expression a perfect square trinomial.
5. Applying the Formula:
Using the value obtained from [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex]:
[tex]\[ x^2 + bx + \left(\frac{b}{2}\right)^2 \][/tex]
This trinomial can now be written as a perfect square:
[tex]\[ \left(x + \frac{b}{2}\right)^2 \][/tex]
6. Example:
For instance, if [tex]\( b = 6 \)[/tex]:
[tex]\[ c = \left(\frac{6}{2}\right)^2 = 3^2 = 9 \][/tex]
The original expression [tex]\( x^2 + 6x \)[/tex] can be transformed into:
[tex]\[ x^2 + 6x + 9 \][/tex]
Which can be written as:
[tex]\[ (x + 3)^2 \][/tex]
Thus, the formula [tex]\( c = \left(\frac{b}{2}\right)^2 \)[/tex] is used to complete the square in algebra by transforming a quadratic expression into a perfect square trinomial.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.