Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's go through the proof step-by-step:
1. Given:
- [tex]$ABC$[/tex] is a triangle.
2. To Prove:
- \( BC + AC > BA \)
3. Construction:
- Draw a perpendicular line segment from vertex \( C \) to segment \( AB \). Let the intersection point of \( AB \) and the perpendicular be \( E \).
4. Key Observations:
1. The line segment \( BE \) is the perpendicular distance from \( B \) to \( CE \). By the Shortest Distance Theorem, this perpendicular distance \( BE \) is the shortest distance from \( B \) to \( CE \).
2. Similarly, the line segment \( AE \) is the perpendicular distance from \( A \) to \( CE \), and is the shortest distance from \( A \) to \( CE \).
5. Inequalities:
- Since \( BC \) is a slant distance and \( BE \) is the perpendicular (shortest distance), we have:
[tex]\[ BC > BE \][/tex]
- Similarly, since \( AC \) is a slant distance and \( AE \) is the perpendicular (shortest distance), we have:
[tex]\[ AC > AE \][/tex]
6. Adding Inequalities:
- We can add the inequalities \( BC > BE \) and \( AC > AE \):
[tex]\[ BC + AC > BE + AE \][/tex]
7. Relationship of \( BE \) and \( AE \) to \( BA \):
- Since \( E \) is the intersection point of the perpendicular from \( C \) to \( AB \), and \( BE + AE \) forms a part of the line segment \( AB \), thus:
[tex]\[ BE + AE = BA \][/tex]
8. Substitution:
- Substituting \( BA \) for \( BE + AE \) in the inequality \( BC + AC > BE + AE \), we get:
[tex]\[ BC + AC > BA \][/tex]
Conclusion:
- Therefore, by the Shortest Distance Theorem and the triangle inequality, we have:
[tex]\[ BC + AC > BA \][/tex]
Thus, we have successfully proven that in triangle [tex]\( ABC \)[/tex], [tex]\( BC + AC > BA \)[/tex].
1. Given:
- [tex]$ABC$[/tex] is a triangle.
2. To Prove:
- \( BC + AC > BA \)
3. Construction:
- Draw a perpendicular line segment from vertex \( C \) to segment \( AB \). Let the intersection point of \( AB \) and the perpendicular be \( E \).
4. Key Observations:
1. The line segment \( BE \) is the perpendicular distance from \( B \) to \( CE \). By the Shortest Distance Theorem, this perpendicular distance \( BE \) is the shortest distance from \( B \) to \( CE \).
2. Similarly, the line segment \( AE \) is the perpendicular distance from \( A \) to \( CE \), and is the shortest distance from \( A \) to \( CE \).
5. Inequalities:
- Since \( BC \) is a slant distance and \( BE \) is the perpendicular (shortest distance), we have:
[tex]\[ BC > BE \][/tex]
- Similarly, since \( AC \) is a slant distance and \( AE \) is the perpendicular (shortest distance), we have:
[tex]\[ AC > AE \][/tex]
6. Adding Inequalities:
- We can add the inequalities \( BC > BE \) and \( AC > AE \):
[tex]\[ BC + AC > BE + AE \][/tex]
7. Relationship of \( BE \) and \( AE \) to \( BA \):
- Since \( E \) is the intersection point of the perpendicular from \( C \) to \( AB \), and \( BE + AE \) forms a part of the line segment \( AB \), thus:
[tex]\[ BE + AE = BA \][/tex]
8. Substitution:
- Substituting \( BA \) for \( BE + AE \) in the inequality \( BC + AC > BE + AE \), we get:
[tex]\[ BC + AC > BA \][/tex]
Conclusion:
- Therefore, by the Shortest Distance Theorem and the triangle inequality, we have:
[tex]\[ BC + AC > BA \][/tex]
Thus, we have successfully proven that in triangle [tex]\( ABC \)[/tex], [tex]\( BC + AC > BA \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.