Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which terms complete the factorization of [tex]$x^2 + 27x + 162$[/tex] represented by the model?

A. [tex]$27, 9x, 18x$[/tex]
B. [tex]$9, 9x, 18x$[/tex]
C. [tex]$27, 9x, 27x$[/tex]
D. [tex]$9, 9x, 27x$[/tex]


Sagot :

To factorize the quadratic expression \(x^2 + 27x + 162\), we follow these steps:

1. Identify the quadratic expression: \(x^2 + 27x + 162\).

2. Find the roots of the quadratic equation: To find factors, we look for values of \(x\) that satisfy the equation \(x^2 + 27x + 162 = 0\).

We use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
where \(a = 1\), \(b = 27\), and \(c = 162\).

3. Calculate the discriminant:
[tex]\[ b^2 - 4ac = 27^2 - 4(1)(162) = 729 - 648 = 81 \][/tex]

The discriminant is positive \(81\), implying two real roots.

4. Find the roots:
[tex]\[ x = \frac{{-27 \pm \sqrt{81}}}{2} = \frac{{-27 \pm 9}}{2} \][/tex]
[tex]\[ x = \frac{{-27 + 9}}{2} = \frac{{-18}}{2} = -9 \][/tex]
[tex]\[ x = \frac{{-27 - 9}}{2} = \frac{{-36}}{2} = -18 \][/tex]

Therefore, the roots are \(x = -9\) and \(x = -18\).

5. Factorize using the roots: If \(x = -9\) and \(x = -18\), we can write the factorized form as:
[tex]\[ (x + 9)(x + 18) \][/tex]

6. Expand the factorized form to confirm:
[tex]\[ (x + 9)(x + 18) = x^2 + 18x + 9x + 162 = x^2 + 27x + 162 \][/tex]

The factorization is indeed correct.

7. Extract individual terms from the factorized form: The terms are:
- From \((x + 9)\): \(x\) and \(9\).
- From \((x + 18)\): \(x\) and \(18\).

Thus, the complete individual terms involved in the factorization are \(9\), \(x\), \(18\), and \(x\).

Given the options, the correct answer is:
[tex]\[ \boxed{9, 9x, 18x} \][/tex]