Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The first error identified in the proof occurs in the step:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
Here’s a detailed, step-by-step explanation leading up to this error and why it is incorrect:
1. Given:
Let \(\Delta XYZ\) be a triangle with an altitude \( h \) from vertex \( X \).
2. Define sine and cosine:
[tex]\[ \sin(X) = \frac{h}{z}, \quad \cos(X) = \frac{r}{z} \][/tex]
By definitions of sine and cosine in a right triangle.
3. Multiplication property of equality:
[tex]\[ z \cdot \sin(X) = h, \quad z \cdot \cos(X) = r \][/tex]
This follows directly from the definitions.
4. Substitution property of equality:
[tex]\[ x^2 = h^2 + (y - r)^2 \][/tex]
5. Substitution: Replace \( h \) and \( r \) using previous definitions:
[tex]\[ x^2 = (z \cdot \sin(X))^2 + (y - z \cdot \cos(X))^2 \][/tex]
6. Expand:
[tex]\[ x^2 = z^2 \sin^2(X) + y^2 - 2 y z \cos(X) + z^2 \cos^2(X) \][/tex]
7. Factoring out:
[tex]\[ x^2 = z^2 [\sin^2(X) + \cos^2(X)] + y^2 - 2 y z \cos(X) \][/tex]
8. Square both sides:
[tex]\[ \sin^2(X) = \frac{h^2}{z^2}, \quad \cos^2(X) = \frac{r^2}{z^2} \][/tex]
9. Substitution:
[tex]\[ x^2 = z^2 \left( \frac{h^2}{z^2} + \frac{r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
10. Combine fractions:
[tex]\[ x^2 = z^2 \left( \frac{h^2 + r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
11. Error – Application of Pythagorean theorem:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
The Pythagorean theorem \((a^2 + b^2 = c^2)\) is incorrectly applied here. It pertains to the sides of a right triangle, but in this context \( z^2 = h^2 + r^2 \) is not accurate as \( h \) and \( r \) typically correspond to different components of the triangle, not directly related by the Pythagorean theorem outside a specific right triangle setup.
Therefore, the step [tex]\( z^2 = h^2 + r^2 \)[/tex] is the first error in the proof, as it incorrectly applies the Pythagorean theorem to parameters that do not conform to its specific conditions.
[tex]\[ z^2 = h^2 + r^2 \][/tex]
Here’s a detailed, step-by-step explanation leading up to this error and why it is incorrect:
1. Given:
Let \(\Delta XYZ\) be a triangle with an altitude \( h \) from vertex \( X \).
2. Define sine and cosine:
[tex]\[ \sin(X) = \frac{h}{z}, \quad \cos(X) = \frac{r}{z} \][/tex]
By definitions of sine and cosine in a right triangle.
3. Multiplication property of equality:
[tex]\[ z \cdot \sin(X) = h, \quad z \cdot \cos(X) = r \][/tex]
This follows directly from the definitions.
4. Substitution property of equality:
[tex]\[ x^2 = h^2 + (y - r)^2 \][/tex]
5. Substitution: Replace \( h \) and \( r \) using previous definitions:
[tex]\[ x^2 = (z \cdot \sin(X))^2 + (y - z \cdot \cos(X))^2 \][/tex]
6. Expand:
[tex]\[ x^2 = z^2 \sin^2(X) + y^2 - 2 y z \cos(X) + z^2 \cos^2(X) \][/tex]
7. Factoring out:
[tex]\[ x^2 = z^2 [\sin^2(X) + \cos^2(X)] + y^2 - 2 y z \cos(X) \][/tex]
8. Square both sides:
[tex]\[ \sin^2(X) = \frac{h^2}{z^2}, \quad \cos^2(X) = \frac{r^2}{z^2} \][/tex]
9. Substitution:
[tex]\[ x^2 = z^2 \left( \frac{h^2}{z^2} + \frac{r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
10. Combine fractions:
[tex]\[ x^2 = z^2 \left( \frac{h^2 + r^2}{z^2} \right) + y^2 - 2 y z \cos(X) \][/tex]
11. Error – Application of Pythagorean theorem:
[tex]\[ z^2 = h^2 + r^2 \][/tex]
The Pythagorean theorem \((a^2 + b^2 = c^2)\) is incorrectly applied here. It pertains to the sides of a right triangle, but in this context \( z^2 = h^2 + r^2 \) is not accurate as \( h \) and \( r \) typically correspond to different components of the triangle, not directly related by the Pythagorean theorem outside a specific right triangle setup.
Therefore, the step [tex]\( z^2 = h^2 + r^2 \)[/tex] is the first error in the proof, as it incorrectly applies the Pythagorean theorem to parameters that do not conform to its specific conditions.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.