Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve this problem step-by-step.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
Step 1: Identify given variables
- Source charge, \( q = 3 \times 10^{-6} \) C (Converting \( 3 \mu C \) to Coulombs)
- Electric field, \( E = 2.86 \times 10^5 \) N/C
- Coulomb's constant, \( k = 8.99 \times 10^9 \) N·m²/C²
Step 2: Understand the relationship
The electric field \( E \) created by a point charge \( q \) at a distance \( r \) is given by:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
Step 3: Rearrange the equation to solve for \( r \)
[tex]\[ r^2 = \frac{k \cdot |q|}{E} \][/tex]
[tex]\[ r = \sqrt{\frac{k \cdot |q|}{E}} \][/tex]
Step 4: Substitute the known values into the equation
[tex]\[ r = \sqrt{\frac{(8.99 \times 10^9) \cdot (3 \times 10^{-6})}{2.86 \times 10^5}} \][/tex]
Step 5: Perform the calculations
First, calculate the numerator inside the square root:
[tex]\[ (8.99 \times 10^9) \cdot (3 \times 10^{-6}) = 26.97 \times 10^{3} \][/tex]
Then, divide by the electric field:
[tex]\[ \frac{26.97 \times 10^{3}}{2.86 \times 10^5} \approx 0.09435 \][/tex]
Finally, take the square root of this value:
[tex]\[ r = \sqrt{0.09435} \approx 0.30708418927176845 \][/tex]
Step 6: Round the result to the nearest hundredth
[tex]\[ r \approx 0.31 \][/tex]
So, the distance of the test charge from the source charge is approximately 0.31 meters to the nearest hundredth.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.