Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's write the equation of the line in point-slope form step-by-step.
### Step 1: Understand the Problem
We need to find the equation of a line that falls 7 units for every 11 unit increases in \(x\) and passes through the point (-2, 5).
### Step 2: Determine the Slope
Since the line falls 7 units for every 11 units it increases in \(x\), the rise (\( \Delta y \)) is -7 (because it falls), and the run (\( \Delta x \)) is 11. The slope \(m\) of the line is given by:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-7}{11} = -0.6363636363636364 \][/tex]
### Step 3: Use the Point-Slope Form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Where \((x_1, y_1)\) is a point on the line and \( m \) is the slope.
Given the point \((-2, 5)\) and the slope \( -0.6363636363636364 \), we can substitute these values into the point-slope form:
[tex]\[ y - 5 = -0.6363636363636364(x - (-2)) \][/tex]
### Step 4: Simplify the Equation
To make the equation clearer:
[tex]\[ y - 5 = -0.6363636363636364(x + 2) \][/tex]
### Summary
So, the equation of the line in point-slope form is:
[tex]\[ y - 5 = -0.6363636363636364(x + 2) \][/tex]
This is the detailed step-by-step solution to writing the equation of the line in point-slope form based on the given conditions.
### Step 1: Understand the Problem
We need to find the equation of a line that falls 7 units for every 11 unit increases in \(x\) and passes through the point (-2, 5).
### Step 2: Determine the Slope
Since the line falls 7 units for every 11 units it increases in \(x\), the rise (\( \Delta y \)) is -7 (because it falls), and the run (\( \Delta x \)) is 11. The slope \(m\) of the line is given by:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-7}{11} = -0.6363636363636364 \][/tex]
### Step 3: Use the Point-Slope Form
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Where \((x_1, y_1)\) is a point on the line and \( m \) is the slope.
Given the point \((-2, 5)\) and the slope \( -0.6363636363636364 \), we can substitute these values into the point-slope form:
[tex]\[ y - 5 = -0.6363636363636364(x - (-2)) \][/tex]
### Step 4: Simplify the Equation
To make the equation clearer:
[tex]\[ y - 5 = -0.6363636363636364(x + 2) \][/tex]
### Summary
So, the equation of the line in point-slope form is:
[tex]\[ y - 5 = -0.6363636363636364(x + 2) \][/tex]
This is the detailed step-by-step solution to writing the equation of the line in point-slope form based on the given conditions.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.