Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's examine the key features of the given functions step by step.
### Function \( f(x) = \frac{-2x + 4}{x - 6} \)
1. Horizontal Asymptote:
To find the horizontal asymptote, we take the limit of \( f(x) \) as \( x \) approaches infinity.
[tex]\[ \lim_{{x \to \infty}} \frac{-2x + 4}{x - 6} = -2 \][/tex]
Thus, the horizontal asymptote is \( y = -2 \).
2. Oblique Asymptote:
To identify the oblique asymptote, we perform polynomial long division of the numerator by the denominator:
[tex]\[ \frac{-2x + 4}{x - 6} = -2 + \frac{16}{x - 6} \][/tex]
As \( x \) approaches infinity, the term \(\frac{16}{x-6}\) approaches 0.
Therefore, the oblique asymptote is given by \( y = -2 \).
### Function \( g(x) = \frac{x^2 - 2x}{x^2 + x - 6} \)
1. Horizontal Asymptote:
Again, we find the limit as \( x \) approaches infinity:
[tex]\[ \lim_{{x \to \infty}} \frac{x^2 - 2x}{x^2 + x - 6} = 1 \][/tex]
Thus, the horizontal asymptote is \( y = 1 \).
2. Oblique Asymptote:
Here, we perform polynomial long division of \( x^2 - 2x \) by \( x^2 + x - 6 \):
[tex]\[ \frac{x^2 - 2x}{x^2 + x - 6} = 1 + \frac{-3x + 6}{x^2 + x - 6} \][/tex]
Thus, the oblique asymptote is represented by remainders once the polynomial division is performed, indicating unique regions for simplified form analysis.
### Function \( h(x) = \frac{x^2 - 2x}{x - 6} \)
1. Horizontal Asymptote:
Evaluating the limit as \( x \) approaches infinity:
[tex]\[ \lim_{{x \to \infty}} \frac{x^2 - 2x}{x - 6} = \infty \][/tex]
This implies there is no horizontal asymptote (or it approaches infinity).
2. Oblique Asymptote:
Performing polynomial long division of \( x^2 - 2x \) by \( x - 6 \):
[tex]\[ \frac{x^2 - 2x}{x - 6} = x + 4 + \frac{24}{x - 6} \][/tex]
As \( x \) approaches infinity, the term \(\frac{24}{x-6}\) approaches 0.
Thus, the oblique asymptote is \( y = x + 4 \).
### Summary:
- Horizontal Asymptotes:
- For \( f(x) \): \( y = -2 \)
- For \( g(x) \): \( y = 1 \)
- For \( h(x) \): No horizontal asymptote
- Oblique Asymptotes:
- For \( f(x) \): None (as it simplifies directly to a horizontal asymptote)
- For \( g(x) \): Complex form with division remainders forming regions
- For \( h(x) \): \( y = x + 4 \)
I hope this detailed analysis helps you understand the key features of these functions!
### Function \( f(x) = \frac{-2x + 4}{x - 6} \)
1. Horizontal Asymptote:
To find the horizontal asymptote, we take the limit of \( f(x) \) as \( x \) approaches infinity.
[tex]\[ \lim_{{x \to \infty}} \frac{-2x + 4}{x - 6} = -2 \][/tex]
Thus, the horizontal asymptote is \( y = -2 \).
2. Oblique Asymptote:
To identify the oblique asymptote, we perform polynomial long division of the numerator by the denominator:
[tex]\[ \frac{-2x + 4}{x - 6} = -2 + \frac{16}{x - 6} \][/tex]
As \( x \) approaches infinity, the term \(\frac{16}{x-6}\) approaches 0.
Therefore, the oblique asymptote is given by \( y = -2 \).
### Function \( g(x) = \frac{x^2 - 2x}{x^2 + x - 6} \)
1. Horizontal Asymptote:
Again, we find the limit as \( x \) approaches infinity:
[tex]\[ \lim_{{x \to \infty}} \frac{x^2 - 2x}{x^2 + x - 6} = 1 \][/tex]
Thus, the horizontal asymptote is \( y = 1 \).
2. Oblique Asymptote:
Here, we perform polynomial long division of \( x^2 - 2x \) by \( x^2 + x - 6 \):
[tex]\[ \frac{x^2 - 2x}{x^2 + x - 6} = 1 + \frac{-3x + 6}{x^2 + x - 6} \][/tex]
Thus, the oblique asymptote is represented by remainders once the polynomial division is performed, indicating unique regions for simplified form analysis.
### Function \( h(x) = \frac{x^2 - 2x}{x - 6} \)
1. Horizontal Asymptote:
Evaluating the limit as \( x \) approaches infinity:
[tex]\[ \lim_{{x \to \infty}} \frac{x^2 - 2x}{x - 6} = \infty \][/tex]
This implies there is no horizontal asymptote (or it approaches infinity).
2. Oblique Asymptote:
Performing polynomial long division of \( x^2 - 2x \) by \( x - 6 \):
[tex]\[ \frac{x^2 - 2x}{x - 6} = x + 4 + \frac{24}{x - 6} \][/tex]
As \( x \) approaches infinity, the term \(\frac{24}{x-6}\) approaches 0.
Thus, the oblique asymptote is \( y = x + 4 \).
### Summary:
- Horizontal Asymptotes:
- For \( f(x) \): \( y = -2 \)
- For \( g(x) \): \( y = 1 \)
- For \( h(x) \): No horizontal asymptote
- Oblique Asymptotes:
- For \( f(x) \): None (as it simplifies directly to a horizontal asymptote)
- For \( g(x) \): Complex form with division remainders forming regions
- For \( h(x) \): \( y = x + 4 \)
I hope this detailed analysis helps you understand the key features of these functions!
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.