Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which expression represents the volume of a sphere with a radius of 6 units, we need to use the formula for the volume of a sphere:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Given \( r = 6 \), substituting this into the formula gives:
[tex]\[ V = \frac{4}{3} \pi (6)^3 \][/tex]
Let's assess each of the given expressions one by one to see if they match this formula.
1. Expression: \( \frac{3}{4} \pi (6)^2 \)
- This expression calculates the area of a circle (not the volume of a sphere), but adjusted by the fraction.
- Volume check: \(\frac{3}{4} \pi (6)^2 = \frac{3}{4} \pi (36) = 27 \pi\)
2. Expression: \( \frac{4}{3} \pi (6)^3 \)
- This is the exact formula for the volume of a sphere with radius 6.
- Volume calculation: \( \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi (216) = 288 \pi\)
3. Expression: \( \frac{3}{4} \pi (12)^2 \)
- This calculates the area of a circle with diameter 12, adjusted by the fraction.
- Volume check: \(\frac{3}{4} \pi (12)^2 = \frac{3}{4} \pi (144) = 108 \pi\)
4. Expression: \( \frac{4}{3} \pi (12)^3 \)
- This calculates the volume of a sphere with radius 12, not 6.
- Volume check: \(\frac{4}{3} \pi (12)^3 = \frac{4}{3} \pi (1728) = 2304 \pi\)
From our evaluations, only the expression \(\frac{4}{3} \pi (6)^3\) matches both the necessary formula and the correct radius value.
Thus, the correct expression representing the volume of the sphere is:
[tex]\[ \frac{4}{3} \pi (6)^3 \][/tex]
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
Given \( r = 6 \), substituting this into the formula gives:
[tex]\[ V = \frac{4}{3} \pi (6)^3 \][/tex]
Let's assess each of the given expressions one by one to see if they match this formula.
1. Expression: \( \frac{3}{4} \pi (6)^2 \)
- This expression calculates the area of a circle (not the volume of a sphere), but adjusted by the fraction.
- Volume check: \(\frac{3}{4} \pi (6)^2 = \frac{3}{4} \pi (36) = 27 \pi\)
2. Expression: \( \frac{4}{3} \pi (6)^3 \)
- This is the exact formula for the volume of a sphere with radius 6.
- Volume calculation: \( \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi (216) = 288 \pi\)
3. Expression: \( \frac{3}{4} \pi (12)^2 \)
- This calculates the area of a circle with diameter 12, adjusted by the fraction.
- Volume check: \(\frac{3}{4} \pi (12)^2 = \frac{3}{4} \pi (144) = 108 \pi\)
4. Expression: \( \frac{4}{3} \pi (12)^3 \)
- This calculates the volume of a sphere with radius 12, not 6.
- Volume check: \(\frac{4}{3} \pi (12)^3 = \frac{4}{3} \pi (1728) = 2304 \pi\)
From our evaluations, only the expression \(\frac{4}{3} \pi (6)^3\) matches both the necessary formula and the correct radius value.
Thus, the correct expression representing the volume of the sphere is:
[tex]\[ \frac{4}{3} \pi (6)^3 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.