Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's walk through the detailed solution to find the impulse given to the ball by the floor.
Given Data:
- Mass of the ball, \( m = 500 \, \text{g} = 0.5 \, \text{kg} \) (since mass should be in kilograms for consistency in SI units).
- Acceleration due to gravity, \( g = 9.81 \, \text{m/s}^2 \).
- Initial height from which the ball is dropped, \( h_{\text{drop}} = 1.5 \, \text{m} \).
- Height to which the ball rebounds, \( h_{\text{rebound}} = 1.2 \, \text{m} \).
### Step-by-Step Solution:
1. Calculate the velocity just before hitting the floor:
We will use the equation of motion for free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
where \( u \) is the initial velocity (which is 0, since the ball starts from rest), \( g \) is the acceleration due to gravity, and \( h \) is the height.
For the fall:
[tex]\[ v_{\text{before}}^2 = 0 + 2gh_{\text{drop}} \][/tex]
[tex]\[ v_{\text{before}} = \sqrt{2 \cdot 9.81 \cdot 1.5} \][/tex]
[tex]\[ v_{\text{before}} \approx 5.424942396007538 \, \text{m/s} \][/tex]
2. Calculate the velocity just after rebounding:
Similarly, using the conservation of energy principles when the ball rebounds:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
where \( u \) is the initial velocity just after rebounding.
For the rebound:
[tex]\[ v_{\text{after}}^2 = 0 + 2gh_{\text{rebound}} \][/tex]
[tex]\[ v_{\text{after}} = \sqrt{2 \cdot 9.81 \cdot 1.2} \][/tex]
[tex]\[ v_{\text{after}} \approx 4.852215988597375 \, \text{m/s} \][/tex]
3. Calculate the impulse imparted to the ball by the floor:
Impulse is defined as the change in momentum. Note that upon rebounding, the direction of the ball's velocity changes, so the velocities add up when considering the impulse.
[tex]\[ \text{Impulse} = \Delta p = m \cdot (v_{\text{after}} + v_{\text{before}}) \][/tex]
[tex]\[ \text{Impulse} = 0.5 \cdot (5.424942396007538 + 4.852215988597375) \][/tex]
[tex]\[ \text{Impulse} \approx 0.5 \cdot 10.277158384604913 \][/tex]
[tex]\[ \text{Impulse} \approx 5.138579192302457 \, \text{Ns} \][/tex]
Hence, the impulse given to the ball by the floor is approximately [tex]\( 5.14 \, \text{Ns} \)[/tex].
Given Data:
- Mass of the ball, \( m = 500 \, \text{g} = 0.5 \, \text{kg} \) (since mass should be in kilograms for consistency in SI units).
- Acceleration due to gravity, \( g = 9.81 \, \text{m/s}^2 \).
- Initial height from which the ball is dropped, \( h_{\text{drop}} = 1.5 \, \text{m} \).
- Height to which the ball rebounds, \( h_{\text{rebound}} = 1.2 \, \text{m} \).
### Step-by-Step Solution:
1. Calculate the velocity just before hitting the floor:
We will use the equation of motion for free fall:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
where \( u \) is the initial velocity (which is 0, since the ball starts from rest), \( g \) is the acceleration due to gravity, and \( h \) is the height.
For the fall:
[tex]\[ v_{\text{before}}^2 = 0 + 2gh_{\text{drop}} \][/tex]
[tex]\[ v_{\text{before}} = \sqrt{2 \cdot 9.81 \cdot 1.5} \][/tex]
[tex]\[ v_{\text{before}} \approx 5.424942396007538 \, \text{m/s} \][/tex]
2. Calculate the velocity just after rebounding:
Similarly, using the conservation of energy principles when the ball rebounds:
[tex]\[ v^2 = u^2 + 2gh \][/tex]
where \( u \) is the initial velocity just after rebounding.
For the rebound:
[tex]\[ v_{\text{after}}^2 = 0 + 2gh_{\text{rebound}} \][/tex]
[tex]\[ v_{\text{after}} = \sqrt{2 \cdot 9.81 \cdot 1.2} \][/tex]
[tex]\[ v_{\text{after}} \approx 4.852215988597375 \, \text{m/s} \][/tex]
3. Calculate the impulse imparted to the ball by the floor:
Impulse is defined as the change in momentum. Note that upon rebounding, the direction of the ball's velocity changes, so the velocities add up when considering the impulse.
[tex]\[ \text{Impulse} = \Delta p = m \cdot (v_{\text{after}} + v_{\text{before}}) \][/tex]
[tex]\[ \text{Impulse} = 0.5 \cdot (5.424942396007538 + 4.852215988597375) \][/tex]
[tex]\[ \text{Impulse} \approx 0.5 \cdot 10.277158384604913 \][/tex]
[tex]\[ \text{Impulse} \approx 5.138579192302457 \, \text{Ns} \][/tex]
Hence, the impulse given to the ball by the floor is approximately [tex]\( 5.14 \, \text{Ns} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.