Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's find the required statistical measures step-by-step based on the given IQ and GPA data.
### 1. Calculate the Sum of Squares for IQ, \( SS(x) \):
The formula for sum of squares for IQ is given by:
[tex]\[ SS(x) = \sum (x_i - \bar{x})^2 \][/tex]
where \( x_i \) are the IQ values and \( \bar{x} \) is the mean IQ.
### 2. Calculate the Sum of Squares for GPA, \( SS(y) \):
The formula for sum of squares for GPA is given by:
[tex]\[ SS(y) = \sum (y_i - \bar{y})^2 \][/tex]
where \( y_i \) are the GPA values and \( \bar{y} \) is the mean GPA.
### 3. Calculate the Sum of Products, \( SS(xy) \):
The formula for sum of products is given by:
[tex]\[ SS(xy) = \sum (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
### 4. Calculate the Correlation Coefficient, \( r \):
The formula for the correlation coefficient is given by:
[tex]\[ r = \frac{SS(xy)}{\sqrt{SS(x) \cdot SS(y)}} \][/tex]
Given the data:
[tex]\[ \begin{array}{ll} IQ & GPA \\ 117 & 3.9 \\ 93 & 2.7 \\ 102 & 2.9 \\ 110 & 3.1 \\ 88 & 2.4 \\ 75 & 1.9 \\ \end{array} \][/tex]
### Solution:
Using the given formulas and the data provided:
#### Sum of Squares for IQ, \( SS(x) \):
[tex]\[ SS(x) = 1173.5 \][/tex]
#### Sum of Squares for GPA, \( SS(y) \):
[tex]\[ SS(y) = 2.29 \][/tex]
#### Sum of Products, \( SS(xy) \):
[tex]\[ SS(xy) = 50.15 \][/tex]
#### Correlation Coefficient, \( r \):
[tex]\[ r = 0.97 \][/tex]
Therefore, the calculated values are:
- \( SS(x) = 1173.5 \)
- \( SS(y) = 2.29 \)
- \( SS(xy) = 50.15 \)
- The correlation coefficient, \( r \), is \( 0.97 \)
These values represent the squared deviations for IQ, GPA, their product, and the measure of the linear relationship between IQ and GPA, respectively.
### 1. Calculate the Sum of Squares for IQ, \( SS(x) \):
The formula for sum of squares for IQ is given by:
[tex]\[ SS(x) = \sum (x_i - \bar{x})^2 \][/tex]
where \( x_i \) are the IQ values and \( \bar{x} \) is the mean IQ.
### 2. Calculate the Sum of Squares for GPA, \( SS(y) \):
The formula for sum of squares for GPA is given by:
[tex]\[ SS(y) = \sum (y_i - \bar{y})^2 \][/tex]
where \( y_i \) are the GPA values and \( \bar{y} \) is the mean GPA.
### 3. Calculate the Sum of Products, \( SS(xy) \):
The formula for sum of products is given by:
[tex]\[ SS(xy) = \sum (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
### 4. Calculate the Correlation Coefficient, \( r \):
The formula for the correlation coefficient is given by:
[tex]\[ r = \frac{SS(xy)}{\sqrt{SS(x) \cdot SS(y)}} \][/tex]
Given the data:
[tex]\[ \begin{array}{ll} IQ & GPA \\ 117 & 3.9 \\ 93 & 2.7 \\ 102 & 2.9 \\ 110 & 3.1 \\ 88 & 2.4 \\ 75 & 1.9 \\ \end{array} \][/tex]
### Solution:
Using the given formulas and the data provided:
#### Sum of Squares for IQ, \( SS(x) \):
[tex]\[ SS(x) = 1173.5 \][/tex]
#### Sum of Squares for GPA, \( SS(y) \):
[tex]\[ SS(y) = 2.29 \][/tex]
#### Sum of Products, \( SS(xy) \):
[tex]\[ SS(xy) = 50.15 \][/tex]
#### Correlation Coefficient, \( r \):
[tex]\[ r = 0.97 \][/tex]
Therefore, the calculated values are:
- \( SS(x) = 1173.5 \)
- \( SS(y) = 2.29 \)
- \( SS(xy) = 50.15 \)
- The correlation coefficient, \( r \), is \( 0.97 \)
These values represent the squared deviations for IQ, GPA, their product, and the measure of the linear relationship between IQ and GPA, respectively.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.